Skip to main content
Log in

A New Emphasis in Strategies for Developing Lignin-Based Plastics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Lignins, a truly abundant group of biopolymers exhibiting some significant diversity, are usually thought to be constituted by a random proportionate distribution of ten different linkages between p-hydroxphenylpropane units. Over 20 million tons of kraft lignin derivatives are produced annually in the United States by the pulping industry, but 99.9% of these aromatic polymeric materials are consumed as fuel. Such industrial byproducts are generally viewed as being almost hopelessly complicated mixtures of partially degraded and condensed chemical species. However, a very different picture has begun to emerge from a more coherent understanding of the physicochemical behavior exhibited by kraft lignin preparations. Noncovalent interactions between the individual molecular components under a variety of solution conditions orchestrate pronounced associative processes that are characterized by a remarkable degree of specificity. Their consequences may be readily observed both size-exclusion chromatographically and electron microscopically, and are reflected in an anomalous variation of glass transition temperature, Tg, with molecular weight of paucidisperse kraft lignin fractions. How these effects may influence the mechanical properties of lignin-based polymeric materials is presently being scrutinized at the University of Minnesota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sakakibara, Wood Sci Technol. 14, 89 (1980).

    Article  CAS  Google Scholar 

  2. H. Grisebach, in The Biochemistry of Plants: 7. Secondary Plant Products, edited by E.E. Conn (Academic Press, New York, 1981), p. 457.

  3. A. Scalbert, B. Monties, J.-Y. Lallemand, E. Guittet, C. Rolando, Phytochemistry 24, 1359 (1985).

    Article  CAS  Google Scholar 

  4. Y. Musha, D.A.I. Goring, Wood Sci. Technol. 9, 45 (1975).

    Article  CAS  Google Scholar 

  5. N. Terashima, Y. Tomimura, H. Araki, Mokuzai Gakkaishi 25, 595 (1979).

    CAS  Google Scholar 

  6. D.A.I. Goring, in Biosynthesis and Biodegradation of Wood Components, edited by T. Higuchi (Academic Press, New York, 1985), p. 161.

  7. K. Forss, K.-E. Fremer, Pap. Puu 47, 443 (1965).

    CAS  Google Scholar 

  8. K. Forss, K.-E. Fremer, Appl. Polym. Symp. 37, 531 (1983).

    CAS  Google Scholar 

  9. W.J. Connors, S. Sarkanen, J. L McCarthy, Holzforschung 34, 80 (1980).

    Article  CAS  Google Scholar 

  10. M. Wayman, T.I. Obiaga, Can. J. Chem. 52, 2102 (1974).

    Article  CAS  Google Scholar 

  11. J.F. Yan, F. Pla, R. Kondo, M. Dolk, J. L McCarthy, Macromolecules 17, 2137 (1984).

    Article  CAS  Google Scholar 

  12. S. Dutta, T.M. GarverJr., S. Sarkanen, ACS Symp. Ser. 397, 155 (1989).

    Article  CAS  Google Scholar 

  13. S. Sarkanen, D.C. Teller, C.R. Stevens, J. L McCarthy, Macromolecules 17, 2588 (1984).

    Article  CAS  Google Scholar 

  14. S.Y. Lin, in Progress in Biomass Conversion, Vol.4, edited by D.A. Tillman, E.C. Jahn (Academic Press, New York, 1983), p. 31.

  15. A.G. Kirkman, J.S. Gratzl, L.L. Edwards, Tappi 69 (5), 110 (1986).

    CAS  Google Scholar 

  16. J. Gierer, Wood Sci Technol. 14, 241 (1980).

    Article  CAS  Google Scholar 

  17. T.M. GarverJr., S. Sarkanen, in Renewable-Resource Materials: New Polymer Sources, edited by C.E. Carraher, Jr., L H. Sperling (Plenum Publishing Corporation, New York, 1986), p. 287.

  18. J. Gierer, I. Pettersson, I. Szabo-Lin, Acta Chem. Scand. B 28, 1129 (1974).

    Article  Google Scholar 

  19. J. Gierer, F. Imsgard, I. Norén, Acta Chem. Scand. B 31, 561 (1977).

    Article  Google Scholar 

  20. G. Gellerstedt, E.L. Lindfors, C. Lapierre, B. Monties, Svensk Papperstidn. 87, R61 (1984).

    CAS  Google Scholar 

  21. H.-m. Chang, J.S. Gratzl, in Chemistry of Delignification with Oxygen, Ozone and Peroxides, edited by J.S. Gratzl, J. Nakano, R.P. Singh (Uni Publishers, Tokyo, 1980) p. 151.

  22. S. Sarkanen, D.C. Teller, J. Hall, J. L McCarthy, Macromolecules 14, 426 (1981).

    Article  CAS  Google Scholar 

  23. E. Tsuchida, K. Abe, Adv. Polym. Sci. 45, 77–85 (1982).

    Google Scholar 

  24. D.A.I. Goring, R. Vuong, C. Gancet, H. Chanzy, J. Appl. Polym. Sci. 24, 931 (1979).

    Article  CAS  Google Scholar 

  25. M.J. Richardson, Proc. Roy. Soc. A 279, 50 (1964).

    CAS  Google Scholar 

  26. Lignin: Properties and Materials, edited by W.G. Glasser, S. Sarkanen (American Chemical Society, Washington, D.C., 1989), ACS Symp. Ser.397.

    Google Scholar 

  27. H. Yoshida, R. Mörck, K.P. Kringstad, H. Hatakeyama, Holzforschung 41, 171 (1987).

    Article  CAS  Google Scholar 

  28. J.M.G. Cowie, Eur. Polym. J. 11, 297 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment for support of this research is made to the United States Department of Agriculture (Grant 86-FSTY-9-0166), the Legislative Commission on Minnesota Resources, the Blandin Foundation, the Graduate School of the University of Minnesota, the Minnesota Agricultural Experiment Station, and the University of Minnesota Computer Center. The authors are indebted to G.G. Ahlstrand, Department of Plant Pathology at the University of Minnesota, for expert technical contributions to the studies employing transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, S., Sarkanen, S. A New Emphasis in Strategies for Developing Lignin-Based Plastics. MRS Online Proceedings Library 197, 31–39 (1990). https://doi.org/10.1557/PROC-197-31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-197-31

Navigation