Skip to main content
Log in

Effect of Precursor Sol Ageing on Sol-Gel Derived Ruthenium Oxide Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Teowee, J. M. Boulton, S. Hassan., K. McCarthy, F. McCarthy, T. J. Bulkowski, T. P. Alexander and D. R. Uhlmann, Int. Ferroelctrics 18, 287–95(1997).

    Article  CAS  Google Scholar 

  2. O. Auciello et al., Mat. Res. Soc. Symp. Proc., 341, 385 (1994).

    Article  CAS  Google Scholar 

  3. E. Kolawa, F. C. T. So, W. Flick, X.-A. Zhao, E. T-S Pan and M. A. Nicolet, Thin Solid Films 173, 217–24 (1989).

    Article  CAS  Google Scholar 

  4. Krusin-L. Elbaum, M. Wittman and D. S. Yee, Appl. Phys. Lett., 50[26], 1879–81 (1987).

    Article  Google Scholar 

  5. M. L. Green, M. E. Cross, L. E. Papa, K. J. Schnoes and D. Brasen, J. Electrochem Soc., 132(11), 2677–85 (1985).

    Article  CAS  Google Scholar 

  6. James F. Tressler, Koji Watanabe and Masahiro, J. Am. Cera. Soc., 79(2) 525–29 (1996).

    Article  CAS  Google Scholar 

  7. C. Chen, D. F. Ryder Jr., and W. A. Spurgeon, J. Am. Ceram. Soc. 72, 1495 (1989).

    Article  CAS  Google Scholar 

  8. T. J. Boyle, D. Dimos, R. W. Schwartz, T. M. Alam, M. S. Sinclair and C. D. Buchheit, J. Mater. Res., 12, 1022–30(1997)

    Article  CAS  Google Scholar 

  9. D. Cullity, Elements of X-ray diffraction (Addison-Wesley publishing Co., Inc USA 1967)p261.

    Google Scholar 

  10. S. Y. Mar, J. S. Liang, C. Y. Sun and Y. S. Huang, Thin Solid Films, 238, 158–62 (1994).

    Article  CAS  Google Scholar 

  11. Y. Kaga, Y. Abe, H. Yanagisawa, M. Kawamura and K. Sasaki, Surface Science Spectra, 6, 1 68–74(1999).

    Article  CAS  Google Scholar 

  12. Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division).

  13. H. Kezuka, R. Egerton, M. Masui, T. wada, T. Ikehata, H. Mase and M. Takeuchi, Appl.Surface Sci., 65/66, 293–297 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaskar, S., Majumder, S.B., Dobal, P.S. et al. Effect of Precursor Sol Ageing on Sol-Gel Derived Ruthenium Oxide Thin Films. MRS Online Proceedings Library 606, 211 (1999). https://doi.org/10.1557/PROC-606-211

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-606-211

Navigation