Skip to main content
Log in

Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Mo-rich Mo-Si-B multiphase alloys are currently being explored for their potential as high-temperature structural materials for components in hot sections in aircraft engines. In this paper, we present crack growth behavior in one such two-phase alloy consisting of a Mo solid solution matrix in which is dispersed approximately 40 volume percent of the Mo5SiB2 (T2) phase. Crack growth under monotonic and cyclic loading is considered over a temperature range spanning 20°C to 1400°C. The effects of loading rate (in monotonic loading) and dwell times at maximum stress (in cyclic loading) at high temperatures on crack growth were examined to understand the contribution from creep. Results confirm a gradual increase in fracture toughness upto 1000°C, beyond which the increase is more substantial with temperature; fatigue susceptibility was also observed in excess of 900°C and crack-tip-stresses-driven microstructural instability is evident at 1400°C. At this temperature, slow loading rates or dwell times at maximum stress lead to crack-tip recrystallization and creep cavitation that together degrade the material’s properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.P. Bewlay, M.R. Jackson, J._C. Zhao, P.R. Subramanian, M.G. Mendiratta and J.J. Lewandowski, MRS Bulletin, 28, 646 (2003).

    Article  CAS  Google Scholar 

  2. D.M. Dimiduk and J.H. Perepezko, MRS Bulletin, 28, 639 (2003).

    Article  CAS  Google Scholar 

  3. J.H. Perepezko, R. Sakidja and K.S. Kumar, “Mo-Si-B Alloys for Ultra-High Temperature Applications”, in Advanced Structural Materials: Properties, Design, Optimization and Applications, Marcel Dekker, Inc.– in press, November 2006.

  4. C.A. Nunes, R. Sakidja and J.H. Perepezko, in Structural Intermetallics 1997, Editors; M.V. Nathal et al., TMS, Warrendale, PA. 1997, p. 831.

    Google Scholar 

  5. R. Sakidja, G. Wilde, H. Sieber and J.H. Perepezko, in High-Temperature Ordered Intermetallic Alloys VIII, Vol. 552, editors, E.P. George, M.J. Mills and M. Yamaguchi, Materials Research Society, Warrendale, PA, 1999, p. KK6.3.1.

    Google Scholar 

  6. J.H. Perepezko, R. Sakidja and S. Kim, in High Temperature Ordered Intermetallic Alloys IX, Vol. 646, editors, J.H. Schneibel et al., Materials Research Society, Pittsburgh, PA, 2001, p. N4.5.

    Google Scholar 

  7. J.H. Perepezko, R. Sakidja, S. Kim, Z. Dong and J.S. Park, in Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, The Materials Society, Warrendale, PA, 2001, p.505.

    Google Scholar 

  8. R. Sakidja and J.H. Perepezko, Metall. Mater. Trans., 36A, 507 (2005).

    Article  CAS  Google Scholar 

  9. R. Sakidja, S. Kim, J.S. Park, and J.H. Perepezko, in Defect Properties and Related Phenomena in Intermetallic Alloys, Vol. 753, editors, E.P. George, H. Inui, M.J. Mills and G. Eggler, Materials Research Society, Warrendale, PA, 2003, BB2.3.

    Google Scholar 

  10. T.A. Parthasarathy, M.G. Mendiratta and D.M. Dimiduk, Acta Mater., 50, 1857 (2002).

    Article  CAS  Google Scholar 

  11. P. Mandal, A.J. Thom, V. Behrani, M.J. Kramer, and M. Akinc, Mater. Sci Eng., A371, 335 (2004).

    Article  CAS  Google Scholar 

  12. M.K. Meyer, A.J. Thom and M. Akinc, Intermetallics, 7, 153 (1999).

    Article  CAS  Google Scholar 

  13. A.J. Thom, E. Summers and M. Akinc, Intermetallics, 10, 555 (2002).

    Article  CAS  Google Scholar 

  14. V. Behrani, A. Thom, M. Kramer and M. Akinc, Metall. Mater. Trans., 36A, 609 (2005).

    Article  CAS  Google Scholar 

  15. K. Ito, T. Hayashi, M. Yokobayashi, T. Murakami and H. Numakura, Metall. Mater. Trans., 36A, 627 (2005).

    Article  CAS  Google Scholar 

  16. P. Jéhanno, M. Heilmaier, H. Kestler, M. Böning, A. Venskutonis, B. Bewlay, and M. Jackson, Metall. Mater. Trans., 36A, 515 (2005).

    Article  Google Scholar 

  17. J.H. Schneibel, R.O. Ritchie, J.J. Kruzic and P.F. Tortorelli, Metall. Mater. Trans., 36A, 525 (2005).

    Article  CAS  Google Scholar 

  18. K. Ito, K. Ihara, K. Tanaka, M. Fujikura and M. Yamaguchi, Intermetallics, 9, 591 (2001).

    Article  CAS  Google Scholar 

  19. M.K. Meyers, M.J. Kramer and M. Akinc, Intermetallics, 4, 273 (1996).

    Article  Google Scholar 

  20. D.P. Mason and D.C. Van Aken, Acta Metall. Mater., 43, 1201 (1995).

    Article  CAS  Google Scholar 

  21. K. Yoshimi, M.H. Yoo, A.A. Wereszczak, S.M. Borowicz, E.P. George and R.H. Zee, Scripta Mater., 45, 1321 (2001).

    Article  CAS  Google Scholar 

  22. I. Rosales and J.H. Schneibel, Intermetallics, 8, 885 (2000).

    Article  CAS  Google Scholar 

  23. A.P. Alur, N. Chollacoop and K.S. Kumar, Acta Materialia, 52, 5571 (2004).

    Article  CAS  Google Scholar 

  24. K. Yoshimi, S. Nakatani, N. Nomura and S. Hanada, Intermetallics, 11, 787 (2003).

    Article  CAS  Google Scholar 

  25. J.H. Schneibel, M.J. Kramer, O. Unal and R.N. Wright, Intermetallics, 9, 25 (2001).

    Article  CAS  Google Scholar 

  26. J.H. Schneibel, D.S. Easton, E. Choe and R.O. Ritchie, in Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, The Materials Society, Warrendale, PA, 2001, p. 801.

    Google Scholar 

  27. J.H. Schneibel, C.T. Liu, L. Heatherly and M.J. Kramer, Scripta Mater., 7, 1169 (1998).

    Article  Google Scholar 

  28. J.H. Schneibel, Intermetallics, 11, 625 (2003).

    Article  CAS  Google Scholar 

  29. T.G. Nieh, J.G. Wang and C.T. Liu, Intermetallics, 9, 73 (2001).

    Article  CAS  Google Scholar 

  30. H. Choe, D. Chen, J.H. Schneibel and R.O. Ritchie, Intermetallics, 9, 319 (2001).

    Article  CAS  Google Scholar 

  31. H. Choe, J.H. Schneibel and R.O. Ritchie, Metall. Mater. Trans., 34A, 225 (2003).

    Article  CAS  Google Scholar 

  32. J.J. Kruzic, J.H. Schneibel and R.O. Ritchie, Scripta Mater., 50, 459 (2004).

    Article  CAS  Google Scholar 

  33. K.D. Challenger and P.G. Vining, Journal of Eng. Mat. Techn., 105, 280 (1983).

    Article  Google Scholar 

  34. K. Sadananda and P. Shahinian, Met. Trans. A, 11A, 267(1980).

    Article  CAS  Google Scholar 

  35. K. Sadananda and P. Shahinian, Engineering Fracture Mechanics, 11, 73 (1979).

    Article  CAS  Google Scholar 

  36. S.-F. Chen and R.P. Wei, Mater. Sci. Eng., A256, 197 (1998).

    Article  CAS  Google Scholar 

  37. A.P. Alur, N. Chollacoop and K.S. Kumar, Acta Mater., (2006) – in press.

  38. A.P. Alur and K.S. Kumar, Acta Mater., 54, 385 (2006).

    Article  CAS  Google Scholar 

  39. P. Jain and K.S. Kumar, MRS Fall Meeting 2006 – this proceedings.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Alur, A.P. Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy. MRS Online Proceedings Library 980, 601 (2006). https://doi.org/10.1557/PROC-980-0980-II06-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-980-0980-II06-01

Navigation