Skip to main content
Log in

High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The addition of Ag to Cu–Zr alloys is very effective for the increase in the stability of supercooled liquid as well as the glass-forming ability (GFA). The large supercooled liquid region (ΔTx) exceeding 60 K in Cu–Zr–Ag ternary system was obtained in a wide range of 25–55 at.% Cu, 40–65 at.% Zr, and 5–25 at.% Ag. The best GFA was obtained around Cu45Zr45Ag10, and glassy alloy rods with diameters up to 6.0 mm were formed by copper mold casting. The bulk glassy alloys exhibit good mechanical properties, i.e., compressive fracture strength of 1780–1940 MPa, Young’s modulus of 106–112 GPa, compressive plastic elongation of 0.2–2.9%, and Vickers hardness of 534–599. The finding of the new Cu–Zr–Ag ternary glassy alloy system with high GFA and good mechanical properties is important for development and scientific studies of bulk glassy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, K. Ohtera, K. Kita and T. Masumoto: New amorphous Mg–Ce–Ni alloys with high strength and good ductility. Jpn. J. Appl. Phys. 27, L2248 (1988).

    Article  CAS  Google Scholar 

  2. A. Inoue, T. Zhang and T. Masumoto: Al–La–Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 30, 965 (1989).

    Article  CAS  Google Scholar 

  3. A. Inoue, T. Zhang and T. Masumoto: Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31, 177 (1990).

    Article  CAS  Google Scholar 

  4. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  5. A. Inoue and S.G. Gook: Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater. Trans. JIM 36, 1180 (1995).

    Article  CAS  Google Scholar 

  6. A. Inoue, T. Zhang and A. Takeuchi: Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM = IV–VIII group transition metal) system. Appl. Phys. Lett. 71, 464 (1997).

    Article  CAS  Google Scholar 

  7. A. Inoue and B. Shen: Soft magnetic bulk glassy Fe–B–Si–Nb alloys with high saturation magnetization above 1.5 T. Mater. Trans. 43, 766 (2002).

    Article  CAS  Google Scholar 

  8. Z.P. Lu, C.T. Liu and W.D. Porter: Structural amorphous steels. Phys. Rew. Lett. 92, 245503 (2004).

    Article  CAS  Google Scholar 

  9. T. Itoi and A. Inoue: Thermal stability and soft magnetic properties of Co–Fe–M–B (M = Nb, Zr) amorphous alloys with large supercooled liquid region. Mater. Trans. JIM 41, 1256 (2000).

    Article  CAS  Google Scholar 

  10. H. Koshiba and A. Inoue: Preparation and magnetic properties of Co-based bulk glassy alloys. Mater. Trans. 42, 2572 (2001).

    Article  CAS  Google Scholar 

  11. X. Wang, I. Yoshii, A. Inoue, Y.H. Kim and I.B. Kim: Bulk amorphous Ni75−xNb5MxP20−yBy (M = Cr, Mo) alloys with large supercooling and high strength. Mater. Trans. JIM 40, 1130 (1999).

    Article  CAS  Google Scholar 

  12. S. Yi, T.G. Park and D.H. Kim: Ni-based bulk amorphous alloys in the Ni–Ti–Zr–(Si, Sn) system. J. Mater. Res. 15, 2425 (2000).

    Article  CAS  Google Scholar 

  13. T. Zhang and A. Inoue: New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 43, 708 (2002).

    Article  CAS  Google Scholar 

  14. H.C. Yim, D. Xu and W.L. Johnson: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B,Fe,Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).

    Article  CAS  Google Scholar 

  15. W. Zhang and A. Inoue: Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys. Scripta Mater. 48, 641 (2003).

    Article  CAS  Google Scholar 

  16. D. Xu, G. Duan and W.L. Johnson: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).

    Article  CAS  Google Scholar 

  17. X.H. Lin and W.L. Johnson: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).

    Article  CAS  Google Scholar 

  18. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 3645 (2001).

    Article  Google Scholar 

  19. A. Inoue and W. Zhang: Formation, Thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans. 43, 2921 (2002).

    Article  CAS  Google Scholar 

  20. A. Inoue and W. Zhang: Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K. J. Mater. Res. 18, 1435 (2003).

    Article  CAS  Google Scholar 

  21. A. Inoue, T. Zhang and T. Masumoto: Preparation of bulky amorphous Zr–Al–Co–Ni–Cu alloys by copper mold casting and their thermal and mechanical properties. Mater. Trans. JIM 36, 391 (1995).

    Article  CAS  Google Scholar 

  22. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).

    Article  CAS  Google Scholar 

  23. T. Zhang and A. Inoue: Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM 39, 1001 (1998).

    Article  CAS  Google Scholar 

  24. A. Inoue, T. Zhang, K. Kurosaka and W. Zhang: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti–Be system. Mater. Trans. 42, 1800 (2001).

    Article  CAS  Google Scholar 

  25. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: Cu-based bulk glassy alloys with good mechanical properties in Cu–Zr–Hf–Ti system. Mater. Trans. 42, 1805 (2001).

    Article  CAS  Google Scholar 

  26. T. Zhang, K. Kurosaka and A. Inoue: Thermal and mechanical properties of Cu-based Cu–Zr–Ti–Y bulk glassy alloys. Mater. Trans. 42, 2042 (2001).

    Article  CAS  Google Scholar 

  27. T. Zhang, T. Yamamoto and A. Inoue: Formation, thermal stability and mechanical properties of (Cu0.6Zr0.3Ti0.1)100−xMx (M=Fe, Co, Ni) bulk glassy alloys. Mater. Trans. 43, 3222 (2002).

    Article  CAS  Google Scholar 

  28. Y.S. Shin, J.H. Kim, D.M. Li, J.K. Li, H.J. Kim, H.G. Jeong and J.C. Bae: New Cu-based bulk metallic glasses with high strength of 2000 MPa. Mater. Sci. Forum 449–452, 945 (2004).

    Article  Google Scholar 

  29. D.V. Louzguine and A. Inoue: Nanoparticles with icosahedral symmetry in Cu-based bulk glass former induced by Pd addition. Scripta Mater. 48, 1325 (2003).

    Article  CAS  Google Scholar 

  30. C. Qin, K. Asami, T. Zhang, W. Zhang and A. Inoue: Corrosion behavior of Cu–Zr–Ti-Nb bulk glassy alloys. Mater. Trans. 44, 749 (2003).

    Article  CAS  Google Scholar 

  31. Y.C. Kim, D.H. Kim and J.C. Lee: Formation of ductile Cu-based bulk metallic glass matrix composite by Ta addition. Mater. Trans. 44, 2224 (2003).

    Article  CAS  Google Scholar 

  32. H. Men, W.T. Kim and D.H. Kim: Effect of titanium on glass-forming ability of Cu–Zr–Al alloys. Mater. Trans. 44, 1647 (2003).

    Article  CAS  Google Scholar 

  33. C. Qin, W. Zhang, H. Kimura, K. Asami and A. Inoue: New Cu–Zr–Al–Nb bulk glassy alloys with high corrosion resistance. Mater. Trans. 45, 1958 (2004).

    Article  CAS  Google Scholar 

  34. W. Zhang and A. Inoue: Thermal stability and mechanical properties of Cu-based bulk glassy alloys in Cu50(Zr1−xHfx)45Al5 system. Mater. Trans. 44, 2220 (2003).

    Article  CAS  Google Scholar 

  35. D.H. Xu, G. Duan and W.L. Johnson: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).

    Article  CAS  Google Scholar 

  36. A. Inoue: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 36, 866 (1995).

    Article  CAS  Google Scholar 

  37. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  38. A. Inoue and W. Zhang: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).

    Article  CAS  Google Scholar 

  39. D. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson and C. Garland: Bulk metallic glass formation in binary Cu-rich alloy series–Cu100−xZrx (x= 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).

    Article  CAS  Google Scholar 

  40. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu and E. Ma: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 (2004).

    Article  CAS  Google Scholar 

  41. B.M. Tang, D.Q. Zhao, M.X. Pan and W.H. Wang: Binary Cu–Zr bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).

    Article  CAS  Google Scholar 

  42. T. Zhang, A. Inoue, and T. Masumoto: (unpublished).

  43. Metals Databook, edited by Japan Inst. Metals (Maruzen, Tokyo, Japan, 1983), p. 8.

  44. F.R. Niessen: Cohesion in Metals (Elsevier Science Publishers, Amsterdam, The Netherlands, 1988), p. 224.

    Google Scholar 

  45. T.B. Massalski: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), p. 29.

    Google Scholar 

  46. H.S. Chen: Glassy metals. Rep. Prog. Phys. 43, 353 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Inoue, A. High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system. Journal of Materials Research 21, 234–241 (2006). https://doi.org/10.1557/jmr.2006.0020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0020

Navigation