Skip to main content
Log in

Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sputter-deposited, Al/Pt multilayer thin films of various designs exhibited rapid, self-propagating, high-temperature reactions. With reactant layers maintained at ∼21 °C prior to ignition and films adhered to oxide-passivated silicon substrates, the propagation speeds varied from approximately 20 to 90 m/s depending on bilayer dimension and total film thickness. Contrary to current Al–Pt equilibrium phase diagrams, all multilayers reacted in air and in vacuum transformed into rhombohedral AlPt having a space group R-3(148). Rietveld refinement of AlPt powder (generated from thin film samples) yielded trigonal/hexagonal unit cell lattice parameters of a = 15.634(3) Å and c = 5.308(1) Å; the number of formula units = 39. Rhombohedral AlPt was stable to 550 °C with transformation to a cubic FeSi-type structure occurring above this temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Moore, H.J. Feng: Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243 (1995).

    Article  CAS  Google Scholar 

  2. J.J. Moore, H.J. Feng: Combustion synthesis of advanced materials: Part II. Classification, applications and modelling. Prog. Mater. Sci. 39, 275 (1995).

    Article  CAS  Google Scholar 

  3. J.A. Floro: Propagation of explosive crystallization in thin Rh–Si multilayer films. J. Vac. Sci. Technol., A 4, 631 (1986).

    Article  CAS  Google Scholar 

  4. A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, T.P. Weihs: Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 (2000).

    Article  CAS  Google Scholar 

  5. M.E. Reiss, C.M. Esber, D. Van Heerden, A.J. Gavens, M.E. Williams, T.P. Weihs: Self-propagating formation reactions in Nb/Si multilayers. Mater. Sci. Eng., A 261, 217 (1999).

    Article  Google Scholar 

  6. C. Suryanarayana, J.J. Moore, R.P. Radtke: Novel methods of brazing dissimilar materials. Adv. Mater. Proc. 159, 29 (2001).

    CAS  Google Scholar 

  7. J. Wang, E. Besnoin, O.M. Knio, T.P. Weihs: Investigating the effect of applied pressure on reactive multilayer foil joining. Acta Mater. 52, 5265 (2004).

    Article  CAS  Google Scholar 

  8. T.W. Barbee Jr., T.P. Weihs: Ignitable heterogeneous stratified structure for the propagation of an internal exothermic chemical reaction along an expanding wavefront and method of making same. U.S. Patent No. 5 538 795 (23 July 1996).

    Google Scholar 

  9. D.P. Adams, M.M. Bai, M.A. Rodriguez, J.J. Moore, L. Brewer: Structure and properties of Ni/Ti thin films used for brazing, in Proc. 3rd International Brazing and Soldering Conference, edited by J.J. Stephens and K.S. Weil (ASM International, Materials Park, OH, 2006), p. 298.

  10. E. Ma, C.V. Thompson, L.A. Clevenger, K.N. Tu: Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl. Phys. Lett. 57, 1262 (1990).

    Article  CAS  Google Scholar 

  11. R. Armstrong, M. Koszykowski: Combustion and Plasma Synthesis of High-Temperature Materials (VCH Publishers, New York, 1990), pp. 88–98.

    Google Scholar 

  12. A.B. Mann, A.J. Gavens, M.E. Reiss, D. Van Heerden, G. Bao, T.P. Weihs: Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J. Appl. Phys. 82, 1178 (1997).

    Article  CAS  Google Scholar 

  13. B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter: Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure. Acta Mater. 48, 3895 (2000).

    Article  CAS  Google Scholar 

  14. F.R. De Boer, R. Boom, W.C.M Mattens, A.R. Miedema, A.K. Niessen: Cohesion in Metals Transition Metal Alloys (North Holland, Amsterdam, The Netherlands, 1988).

    Google Scholar 

  15. S.H. Fischer, M.C. Grubelich: Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals, SAND98-1176C (Sandia National Laboratories, Albuquerque, NM, 1998).

    Book  Google Scholar 

  16. S. Jayaraman, A.B. Mann, M.E. Reiss, T.P. Weihs, O.M. Knio: Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils. Combust. Flame 124, 178 (2001).

    Article  CAS  Google Scholar 

  17. J. Wang, E. Besnoin, O.M. Knio, T.P. Weihs: Effects of physical properties of components on reactive nanolayer joining. J. Appl. Phys. 97, 114307 (2005).

    Article  CAS  Google Scholar 

  18. A.J. McAlister, D.J. Kahan: Binary Alloy Phase Diagrams, edited by T.B. Massaski (American Society of Metals, Metals Park, OH, 1986), pp. 152–155.

  19. K. Wu, Z. Jin: Thermodynamic assessment of the Al–Pt binary system. J. Phase Equilib. 21, 221 (2000).

    Article  CAS  Google Scholar 

  20. K. Schubert, W. Burkhardt, P. Esslinger, E. Gunzel, H. Meissner, W. Schutt, J. Wegst, M. Wilkens: One structural product/yield in a metallic phase. Naturwissenschaften 43, 2481956, in German.

    Article  CAS  Google Scholar 

  21. S. Bhan, H. Kudielka: Ordered bcc-phases at high temperatures in alloys of transition metals and B-subgroup elements. Z. Metallkd. 69, 333 (1978).

    CAS  Google Scholar 

  22. T. Chattopadhyay, K. Schubert: Crystal structure of Pt3Ga(R) and some phases of mixture Pt–Al. J. Less-Common Met. 41, 19 (1975).

    Article  CAS  Google Scholar 

  23. T. Matković, K. Schubert: Crystal structure of PdAl.r. J. Less-Common Met. 55, 45 (1977).

    Article  Google Scholar 

  24. C. Weidenthaler, W. Brijoux, T. Ould-Ely, B. Spliethoff, H. Bönnemann: Synthesis and characterization of a new modification of PtAl. Appl. Organomet. Chem. 17, 701 (2003).

    Article  CAS  Google Scholar 

  25. G. Piatti, G. Pellegrini: The structure of the unidirectionally solidified Al–Al21Pt5 eutectic alloys. J. Mater. Sci. 15, 2403 (1980).

    Article  CAS  Google Scholar 

  26. M. Ellner, U. Kattner, B. Predel: Constitutional and structural study of aluminum rich phases in the Ni–Al and Pt–Al systems. J. Less-Common Met. 87, 305 (1982).

    Article  CAS  Google Scholar 

  27. W. Bronger, K.J. Wrzensien: The structure of Al3Pt5. J. Alloys Compd. 244, 194 (1996).

    Article  CAS  Google Scholar 

  28. T. Chattopadhyay, K. Schubert: Crystal structure of Pt2Al. J. Less-Common Met. 45, 79 (1976).

    Article  CAS  Google Scholar 

  29. D. Chatterji, R.C. Decries, J.F. Fleischer: Investigation of sub-solidus equilibria in the platinum-aluminium system using diffusion couples. J. Less-Common Met. 42, 187 (1975).

    Article  CAS  Google Scholar 

  30. R. Huch, W. Klemm: The platinum-aluminum system. Z. Anorg. Chem. 329, 123 (1964).

    Article  CAS  Google Scholar 

  31. Y. Oya, Y. Mishima, T. Suzuki: Pt–Al and Pt–Ga phase diagram with emphasis on the polymorphism of Pt3Al and Pt3Ga. Z. Metallkd. 78, 485 (1987).

    CAS  Google Scholar 

  32. R. Pretorius, A.M. Vredenberg, F.W. Saris, R. de Reus: Prediction of phase formations sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. J. Appl. Phys. 70, 3636 (1991).

    Article  CAS  Google Scholar 

  33. W.F. Chambers, J.H. Doyle: SANDIA TASK8, version C: A Subroutined Electron Microprobe Automation System. SAND90-1703. (Sandia National Laboratories, Albuquerque, NM, 1990).

    Google Scholar 

  34. D. Van Heerden, A.J. Gavens, A.B. Mann, T.P. Weihs: Metastable phase formation and microstructural evolution during self-propagating reactions in Al/Ni and Al/monel multilayers, in Phase Transformations and Systems Driven Far From Equilibrium, edited by E. Ma, M. Atzmon, P. Bellon, and R. Triveldi (Mater. Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), pp. 533–538.

    Google Scholar 

  35. S. Jayaraman, O.M. Knio, A.B. Mann, T.P. Weihs: Numerical predictions of oscillatory combustion in reactive multilayers. J. Appl. Phys. 86, 800 (1999).

    Article  CAS  Google Scholar 

  36. P. Gas, J. Labar, G. Clugnet, A. Kovacs, C. Bergman, P. Bama: Initial formation and growth of an amorphous phase in Al–Pt thin films and multilayers—Role of diffusion. J. Appl. Phys. 90, 3899 (2001).

    Article  CAS  Google Scholar 

  37. B. Blanpain, L.H. Allen, J.M. Legresy, J.W. Mayer: Solid-state amorphization in Al–Pt multilayers by low-temperature annealing. Phys. Rev. B 39, 13067 (1989).

    Article  CAS  Google Scholar 

  38. J.A. Thornton: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).

    Article  CAS  Google Scholar 

  39. CRC Handbook of Chemistry and Physics, Vol. 79, edited by D.R. Lide (CRC Press, Boca Raton, FL, 1998), pp. 4–122.

  40. CRC Handbook of Chemistry and Physics, Vol. 79, edited by D.R. Lide (CRC Press, Boca Raton, FL, 1998), pp. 6–100.

  41. A.C. Larson, R.B. Von Dreele: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 Los Alamos National Laboratory, Los Alamos, NM, 2000.

    Google Scholar 

  42. International Tables for X-ray Crystallography, Vol. IV (Kluwer Academic, Boston, MA, 1974), p. 71.

  43. A. March: Mathematical theory of regularity according to grain-form for affine deformation. Z. Kristallogr. 81, 285 (1932).

    Google Scholar 

  44. W.A. Dollase: Correction of intensities for preferred orientation in powder diffractometry: Application of the march model. J. Appl. Crystallogr. 19, 267 (1986).

    Article  CAS  Google Scholar 

  45. D.P. Adams, M.A. Rodriguez, N. Moody, J.A. Floro, J.A. Romero: Structure and properties of reactively-deposited erbium hydride thin films, in Hydrogen Effects on Materials Behavior and Corrosion Deformation Mechanisms, edited by N.R. Moody, A.W. Thompson, R. Ricker, G. Was, and R. Jones (TMS, Warrendale, PA, 2003), pp. 363–372.

  46. D.P. Adams, J.A. Romero, M.A. Rodriguez, J. A. Floro, P.G. Kotula: Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films, Sandia National Laboratories Internal Report, SAND2002-1466 Sandia National Laboratories, Albuquerque, NM, 2002.

    Google Scholar 

  47. T. Palasyuk, M. Tkacz: Pressure induced hexagonal to cubic phase transformation in erbium trihydride. Solid State Commun. 130, 219 (2004).

    Article  CAS  Google Scholar 

  48. D.L. Medlin, T.A. Friedmann, P.B. Mirkarimi, P. Rez, M.J. Mills, K.F. McCarty: Microstructure of cubic boron nitride thin films grown by ion-assisted pulsed laser deposition. J. Appl. Phys. 76, 295 (1994).

    Article  CAS  Google Scholar 

  49. L. Ma, R. Wang, K.H. Kuo: Quasicrystals in rapidly solidified alloys of Al–Pt group metals—IV. Quasicrystals in rapidly solidified Al–Pd and Al–Pt alloys. J. Less-Common Met. 163, 37 (1990).

    Article  CAS  Google Scholar 

  50. A.M. Tonejc, A. Tonejc, A. Bonefačić: Non-equilibrium phases in Al-rich Al–Pt alloys. J. Mater. Sci. 9, 523 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D.P., Rodriguez, M.A., Tigges, C.P. et al. Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films. Journal of Materials Research 21, 3168–3179 (2006). https://doi.org/10.1557/jmr.2006.0387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0387

Navigation