Skip to main content
Log in

Effect of Zr addition on the glass-forming ability and mechanical properties of Ni–Nb alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of zirconium (Zr) addition on the glass-forming ability (GFA) and mechanical properties of the Ni61.5Nb38.5 alloy has been studied. The addition of Zr improves the GFA. When x = 5 for Ni61.5Nb38.5−xZrx (in at.%) alloys, the alloy exhibits the best GFA and can be cast into 3-mm-diameter amorphous samples by using the copper mold injection-casting method. Differential scanning calorimetry measurements indicated that the thermal parameters, such as Trg and γ, have not a good correlation with the GFA in the Ni–Nb–Zr alloys. Compression tests reveal that the addition of Zr just decreases the fracture strength slightly from 3.4 to 3 GPa and that all of the tested samples exhibit a little compressive plasticity of about 2%. When x = 9, the feature of the fracture surface indicates that the alloy has a tendency for transition from the ductile to the brittle. And delicate “dimple” and microscale vein pattern structures have been observed on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  2. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  3. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto: Mg-Cu-Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 (1991).

    Article  CAS  Google Scholar 

  4. A. Inoue and T. Zhang: Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold. Mater. Trans., JIM 36, 1184 (1995).

    Article  CAS  Google Scholar 

  5. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  6. A. Inoue, Y. Shinohara, and J.S. Gook: Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater. Trans., JIM 36, 1427 (1995).

    Article  CAS  Google Scholar 

  7. T. Zhang and A. Inoue: Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans., JIM 39, 1001 (1998).

    Article  CAS  Google Scholar 

  8. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 (2001).

    Article  CAS  Google Scholar 

  9. X.M. Wang, I. Yoshii, A. Inoue, Y.H. Kim, and I.B. Kim: Bulk amorphous Ni75−xNb5MxP20−yBy (M = Cr, Mo) alloys with large supercooling and high strength. Mater. Trans., JIM 40, 1130 (1999).

    Article  CAS  Google Scholar 

  10. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).

    Article  CAS  Google Scholar 

  11. W. Zhang and A. Inoue: Formation and mechanical properties of Ni-based Ni-Nb-Ti-Hf bulk glassy alloys. Scripta Mater. 48, 641 (2003).

    Article  CAS  Google Scholar 

  12. M. Lee, D. Bae, W. Kim, and D. Kim: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans. 44, 2084 (2003).

    Article  CAS  Google Scholar 

  13. H. Choi-Yimhoi-Yim, D.H. Xu, and W.L. Johnson: Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X = B,Fe,Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).

    Article  Google Scholar 

  14. H. Choi-Yimhoi-Yim, D. Xu, M.L. Lind, J.F. Loffler, and W.L. Johnson: Structure and mechanical properties of bulk glass-forming Ni-Nb-Sn alloys. Scripta Mater. 54, 187 (2006).

    Article  Google Scholar 

  15. S. Yi, T.G. Park, and D.H. Kim: Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si,Sn) system. J. Mater. Res. 15, 2425 (2000).

    Article  CAS  Google Scholar 

  16. M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, and D.H. Kim: A development of Ni-based alloys with enhanced plasticity. Intermetallics 12, 1133 (2004).

    Article  CAS  Google Scholar 

  17. D. Xu, G. Duan, W.L. Johnson, and C. Garland: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).

    Article  CAS  Google Scholar 

  18. L. Chih-Yuan, T. Hung-Yu, and C. Tsung-Shune: Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett. 86, 162501 (2005).

    Article  Google Scholar 

  19. A. Kawashima, H. Kurishita, H. Kimura, T. Zhang, and A. Inoue: Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Mater. Trans. 46, 1725 (2005).

    Article  CAS  Google Scholar 

  20. M. Leonhardt, W. Loser, and H.G. Lindenkreuz: Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts. Acta Mater. 47, 2961 (1999).

    Article  CAS  Google Scholar 

  21. Z.W. Zhu, H.F. Zhang, D.G. Pan, W.S. Sun, and Z.Q. Hu: Fabrication of binary Ni-Nb bulk metallic glass with high strength and compressive plasticity. Adv. Eng. Mater. 8, 953 (2006).

    Article  CAS  Google Scholar 

  22. D. Turnbull: Under what condition can a glass be formed? Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  23. Z.P. Lu and C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).

    Article  CAS  Google Scholar 

  24. A. Takeuchi and A. Inoue: Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 1372 (2000).

    Article  CAS  Google Scholar 

  25. S. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Y. Shimpo, M. Nishida, H. Kimura, E. Matsubara, and A. Inoue: Hydrogen permeation and structural features of melt-spun Ni-Nb-Zr amorphous alloys. Acta Mater. 53, 3703 (2005).

    Article  CAS  Google Scholar 

  26. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  27. G.L. Chen, X.D. Hui, S.W. Fan, H.C. Kou, and K.F. Yao: Concept of chemical short range order domain and the glass forming ability in multicomponent liquid. Intermetallics 10, 1221 (2002).

    Article  CAS  Google Scholar 

  28. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).

    Article  Google Scholar 

  29. Y.C. Kim, E. Fleury, J.C. Lee, and D.H. Kim: Origin of the simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass matrix composites. J. Mater. Res. 20, 2474 (2005).

    Article  CAS  Google Scholar 

  30. X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, and J.J. Lewandowski: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

    Article  CAS  Google Scholar 

  31. D.G. Pan, H.F. Zhang, A.M. Wang, Z.G. Wang, and Z.Q. Hu: Fracture instability in brittle Mg-based bulk metallic glasses. (Unpublished work 2006).

    Google Scholar 

  32. A.R. Yavari: Absence of thermal embrittlement in some Fe-B and Fe-Si-B glassy alloys. Mater. Sci. Eng. 98, 491 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z.W., Zhang, H.F., Sun, W.S. et al. Effect of Zr addition on the glass-forming ability and mechanical properties of Ni–Nb alloy. Journal of Materials Research 22, 453–459 (2007). https://doi.org/10.1557/jmr.2007.0055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0055

Navigation