Skip to main content
Log in

A precise correcting method for the study of the superhard material using nanoindentation tests

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The accurate description of the indentation load–displacement relationship of an elastic sharp indenter indenting into an elastic half-space is critical for analyzing the nanoindentation data of superhard materials using the procedure proposed by Oliver and Pharr [J. Mater. Res. 7, 1564 (1992)]. A further discussion on this issue is made in the present work to reconcile the apparent inconsistencies that have appeared between the experimental results reported by Lim and Chaudhri [Philos. Mag. 83, 3427 (2003)] and the analysis performed by Fischer-Cripps [J. Mater. Res. 18, 1043 (2003)]. It is found that the indenter size effect is responsible for this large discrepancy. Moreover, according to our analysis, we found that when the deformation of the indenter is significant, besides the errors caused by the Sneddon’s boundary condition as addressed by Hay et al. [J. Mater. Res. 14, 2296 (1999)], the errors induced by the application of reduced modulus should be considered at the same time in correcting the modified Sneddon’s solution. In the present work, for the diamond indenter of 70.3° indenting into an elastic half-space with its Poisson’s ratio varying from 0.0 to 0.5 and the ratio of the Young’s modulus of the indented material to that of the diamond indenter, Ematerial/Eindenter, varying from 0 to 1, a set of new correction factors are proposed based on finite element analysis. The results reported here should provide insights into the analysis of the nanoindentation load–displacement data when using a diamond indenter to determine the hardness and Young’s modulus of superhard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  3. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  4. K.L. Johnson: Contact Mechanics (Cambridge University, Cambridge, UK, 1985).

    Book  Google Scholar 

  5. J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  6. N. Huber and C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks: Part I and II. J. Mech. Phys. Solids 47, 1569 (1999).

    Article  Google Scholar 

  7. A.E. Giannakopoulos and S. Suresh: Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  8. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modelling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  9. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  10. N. Chollacoop, M. Dao, and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  11. M. Mata and J. Alcalá: Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes. J. Mater. Res. 18, 1705 (2003).

    Article  CAS  Google Scholar 

  12. M. Mata and J. Alcalá: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145 (2004).

    Article  Google Scholar 

  13. Y.P. Cao and J. Lu: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).

    Article  CAS  Google Scholar 

  14. Y.P. Cao and J. Lu: Size-dependent sharp indentation: I and II. J. Mech. Phys. Solids 53, 33 (2005).

    Article  CAS  Google Scholar 

  15. Y.P. Cao, X.Q. Qian, J. Lu, and Z.H. Yao: An energy-based method to extract plastic properties of metal materials from conical indentation tests. J. Mater. Res. 20, 1194 (2005).

    Article  CAS  Google Scholar 

  16. T. Chudoba, N. Schwarzer, and F. Richter: Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surf. Coat. Technol. 127, 9 (2000).

    Article  CAS  Google Scholar 

  17. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  18. A.E. Giannakopoulos, P.L. Larsson, and R. Vestergaard: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679 (1994).

    Article  Google Scholar 

  19. P.L. Larsson, A.E. Giannakopoulos, E. Soderlund, D.J. Rowcliffe, and R. Vestergaard: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996).

    Article  Google Scholar 

  20. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  21. M.M. Chaudhri: A note on a common mistake in the analysis of nanoindentation data. J. Mater. Res. 16, 336 (2001).

    Article  CAS  Google Scholar 

  22. A.C. Fischer-Cripps: Use of combined elastic modulus in depth-sensing indentation with a conical indenter. J. Mater. Res. 18, 1043 (2003).

    Article  CAS  Google Scholar 

  23. Y.Y. Lim and M.M. Chaudhri: Experimental investigations of the normal loading of elastic spherical and conical indenters on elastic flats. Philos. Mag. 83, 3427 (2003).

    Article  CAS  Google Scholar 

  24. A.C. Fischer-Cripps, P. Karvankova, and S. Veprek: On the measurement of hardness of super-hard coatings. Surf. Coat. Technol. 200, 5645 (2006).

    Article  CAS  Google Scholar 

  25. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  26. T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, and P.B. Mirkarimi: Thick stress-free amorphous tetrahedral carbon films with hardness near that of diamond. Appl. Phys. Lett. 71, 3820 (1997).

    Article  CAS  Google Scholar 

  27. H. Sjostrom, S. Stafstrom, M. Boman, and J.E. Sundgren: Superhard and elastic carbon nitride thin film having fullerene like microstructure. Phys. Rev. Lett. 75, 1336 (1995).

    Article  CAS  Google Scholar 

  28. S. Veprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, and M. Sima: Recent progress in the superhard nanocrystalline composites towards their industrialization understanding of the origin of the superhardness. Surf. Coat. Technol. 108–109, 138 (1998).

    Article  Google Scholar 

  29. S. Veprek and A.S. Argon: Towards the understanding of the mechanical properties of super- and ultrahard nanocomposites. J. Vac. Sci. Technol., B 20, 650 (2002).

    Article  CAS  Google Scholar 

  30. ABAQUS Theory Manual Version 6.4 (Hibbitt, Karlsson and Sorensen Inc, Pawtucket, RI, 2004).

    Google Scholar 

  31. Y.Y. Lim and M.M. Chaudhri: Indentation of elastic solids with rigid cones. Philos. Mag. 84, 2877 (2004).

    Article  CAS  Google Scholar 

  32. Z.H. Xu and X. Li: Sample size effect on nanoindentation of micro-/nanostructures. Acta Mater. 54, 1699 (2006).

    Article  CAS  Google Scholar 

  33. G.H. Fu and A.C. Fischer-Cripps: On Sneddon’s boundary conditions used in the analysis of nanoindentation data. J. Mater. Sci. 40, 1789 (2005).

    Article  CAS  Google Scholar 

  34. G.I. Barenblatt: Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996).

    Book  Google Scholar 

  35. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  36. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  37. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  38. J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y.P., Dao, M. & Lu, J. A precise correcting method for the study of the superhard material using nanoindentation tests. Journal of Materials Research 22, 1255–1264 (2007). https://doi.org/10.1557/jmr.2007.0150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0150

Navigation