Skip to main content
Log in

Residual stress and strain-free lattice-parameter depth profiles in a γ′-Fe4N1-x layer on an α-Fe substrate measured by x-ray diffraction stress analysis at constant information depth

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The residual stress and lattice-parameter depth profiles in a γ′-Fe4N1-x layer (6-μm thickness) grown on top of an α-Fe substrate were investigated using x-ray diffraction stress analysis at constant penetration depths. Three different reflections (220, 311, and 222) were recorded at six different penetration depths using three different wavelengths. At each penetration depth, x-ray diffraction stress analysis was performed on the basis of the sin2ψ method. As a result, the residual-stress depth profile was obtained from the measured lattice strains. The lattice spacings measured in the strain-free direction were used to determine the (strain-free) lattice-parameter depth profile. The nitrogen-concentration depth profile in the layer was calculated by applying a relationship between the (strain-free) γ′ lattice parameter and the nitrogen concentration. It was found that the strain-free lattice-parameter depth profile as derived from the 311 reflections is best compatible with nitrogen concentrations at the surface and at the γ′/α interface as predicted on the basis of local thermodynamic equilibrium. It could be shown that the 311 reflection is most suitable for the analysis of lattice-parameter and residual stress depth profiles because the corresponding x-ray elastic constants exhibit the least sensitivity to the type of and changes in grain interaction. The depth-dependence of the grain interaction could be revealed. It was found that the grain interaction changes from Voigt-type near the surface to Reuss-type at the layer/substrate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Knerr, T.C. Rose and J.H. Filkowski: Gas nitriding, in ASM Handbook, vol. 4, edited by S.R. Lampman and T.B. Zorc (ASM, 1991), p. 387.

    Google Scholar 

  2. K.H. Jack: Binary and ternary interstitial alloys. I. The ironnitrogen system: The structures of Fe4N and Fe2N. Proc. R. Soc. London, Ser. A 195, 34 (1948).

    Google Scholar 

  3. H. Jacobs, D. Rechenbach and U. Zachwieja: Structure determination of γ-Fe4N and ε-Fe3N. J. Alloys Compd. 227, 10 (1995).

    Google Scholar 

  4. B.J. Kooi, M.A.J. Somers and E.J. Mittemeijer: An evaluation of the Fe-N phase diagram considering long-range order of N atoms in γ-Fe4N1-x and ε-Fe2N1-z. Metall. Mater. Trans. A 27, 1063 (1996).

    Article  Google Scholar 

  5. H.A. Wriedt, N.A. Gokcen and R.H. Nafziger: The Fe-N (ironnitrogen) system. Bull. Alloy Phase Diagr. 8, 355 (1987).

    Article  CAS  Google Scholar 

  6. E.J. Mittemeijer and M.A.J. Somers: Thermodynamics, kinetics, and process control of nitriding. Surf. Eng. 13, 483 (1997).

    Article  CAS  Google Scholar 

  7. J.M.D. Coey and P.A.I. Smith: Magnetic nitrides. J. Magn. Magn. Mater. 200, 405 (1999).

    Article  CAS  Google Scholar 

  8. D.M. Borsa, S. Grachev, D.O. Boerma and W.J. Kerssemakers: High-quality epitaxial iron nitride films grown by gas-assisted molecular-beam epitaxy. Appl. Phys. Lett. 79, 994 (2001).

    Article  CAS  Google Scholar 

  9. J.L. Costa-Krämer, D.M. Borsa, J.M. García-Martín, M.S. Martín-González, D.O. Boerma and F. Briones: Structure and magnetism of single-phase epitaxial γ-Fe4N. Phys. Rev. B: Condens. Matter 69, 144402 (2004).

    Article  CAS  Google Scholar 

  10. E. Bradley Easton, Th. Buhrmester, and J.R. Dahn: Preparation and characterization of sputtered Fe1-xNx films. Thin Solid Films 493, 60 (2005).

    Google Scholar 

  11. T. Gressmann, M. Wohlschlögel, S. Shang, U. Welzel, A. Leineweber, E.J. Mittemeijer and Z-K. Liu: Elastic anisotropy of γ-Fe4N and elastic grain interaction in γ-Fe4N1-y layers on a-Fe: First-principles calculations and diffraction stress measurements. Acta Mater. 55, 5833 (2007).

    Article  CAS  Google Scholar 

  12. H.C.F. Rozendaal, E.J. Mittemeijer, P.F. Colijn and P.J. vander Schaaf: The development of nitrogen concentration profiles on nitriding iron. Metall. Trans. A 14, 395 (1983).

    Article  CAS  Google Scholar 

  13. M.A.J. Somers and E.J. Mittemeijer: Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall. Mater. Trans. A 26, 57 (1995).

    Article  Google Scholar 

  14. T. Liapina, A. Leineweber and E.J. Mittemeijer: Phase transformations in iron-nitride compound layers upon low-temperature annealing: Diffusion kinetics of nitrogen in ε and γ-iron nitrides. Metall. Mater. Trans. A 37, 319 (2006).

    Article  Google Scholar 

  15. P. Schaaf: Laser nitriding of metals. Prog. Mater. Sci. 47, 1 (2002).

    Article  CAS  Google Scholar 

  16. M. Wohlschlögel, U. Welzel and E.J. Mittemeijer: Unexpected formation of ε-Fe3N1+x by gas nitriding of a-Fe thin films. Appl. Phys. Lett. 91, 141901 (2007).

    Article  CAS  Google Scholar 

  17. M.A.J. Somers and E.J. Mittemeijer: Development and relaxation of stress in surface layers; Composition and residual stress profiles in γ-Fe4N1-x layers on a-Fe substrates. Metall. Trans. A 21, 189 (1990).

    Article  Google Scholar 

  18. M.A.J. Somers and E.J. Mittemeijer: Phase transformations and stress relaxation in γ-Fe4N1-x surface layers during oxidation. Metall. Trans. A 21, 901 (1990).

    Article  Google Scholar 

  19. E. Macherauch and P. Müller: The sin2ψ method of x-ray diffraction stress analysis. Z. Angew. Phys. 13, 305 (1961).

    CAS  Google Scholar 

  20. U. Welzel and E.J. Mittemeijer: Diffraction stress analysis of macroscopically elastically anisotropic specimens: On the concepts of diffraction elastic constants and stress factors. J. Appl. Phys. 93, 9001 (2003).

    CAS  Google Scholar 

  21. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen and E.J. Mittemeijer: Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Cryst. 38, 1 (2005).

    Google Scholar 

  22. W. Voigt: Textbook of Crystal Physics. (Teubner, Leipzig, 1910).

    Google Scholar 

  23. A. Reuss: Calculation of the yield stress of solid solutions based on the plasticity condition for single crystals. Z. Angew. Math. Mech. 9, 49 (1929).

    CAS  Google Scholar 

  24. H. Neerfeld: On the calculation of stress from x-ray diffraction strain measurements. Mitt. K.-Wilh.-. Inst. Eisenforschg. 24, 61 (1942).

    Google Scholar 

  25. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65, 349 (1952).

    Google Scholar 

  26. SAE: Report No. HS-784, Residual Stress Measurement by X-Ray Diffraction, 2003.

    Google Scholar 

  27. C.L. Azanza Ricardo, M. D’Incau, and P. Scardi: Revision and extension of the standard laboratory technique for x-ray diffraction measurement of residual stress gradients. J. Appl. Cryst. 40, 675 (2007).

    Google Scholar 

  28. A. Kämpfe, B. Eigenmann and D. Löhe: Comparative application of measuring techniques for x-ray analysis of grinding residual stresses in Al2O3 and AlN. Z. Metallk. 91, 967 (2000).

    Google Scholar 

  29. H. Behnken and V. Hauk: Determination of steep stress gradients by x-ray diffraction—Results of a joint investigation. Mater. Sci. Eng., A 300, 41 (2001).

    Google Scholar 

  30. P. Predecki, B. Ballard and X. Zhu: Proposed methods for depth profiling of residual stresses using grazing incidence x-ray diffraction (GIXD). Adv. X-Ray Anal. 36, 237 (1993).

    CAS  Google Scholar 

  31. K. van Acker, L. de Buyser, J.P. Celis and P. van Houtte: Characterization of thin nickel electrocoatings by the lowincident-beam-angle diffraction method. J. Appl. Cryst. 27, 56 (1994).

    Article  Google Scholar 

  32. Ch. Genzel: X-ray stress gradient analysis in thin layers—Problems and attempts at their solution. Phys. Status Solidi A 159, 283 (1997).

    Article  CAS  Google Scholar 

  33. C. Genzel: X-ray residual stress analysis in thin films under grazing incidence—Basic aspects and applications. Mater. Sci. Technol. 21, 10 (2005).

    Article  CAS  Google Scholar 

  34. Structural and Residual Stress Analysis by Nondestructive Methods, edited by V. Hauk (Elsevier, Amsterdam, 1997).

    Google Scholar 

  35. S. Bein, C. Le Calvez, and J-L. Lebrun: Determination of stress gradients by x-ray diffraction: Comparison of different methods and applications. Z. Metallkd. 89, 289 (1998).

    CAS  Google Scholar 

  36. S.J. Skrzypek, A. Baczmanski, W. Ratuszek and E. Kusior: New approach to stress analysis based on grazing-incidence x-ray diffraction. J. Appl. Crystallogr. 34, 427 (2001).

    Article  CAS  Google Scholar 

  37. A. Kumar, U. Welzel and E.J. Mittemeijer: A method for the non-destructive analysis of gradients of mechanical stresses by x-ray diffraction measurements at fixed penetration/information depths. J. Appl. Crystallogr. 39, 633 (2006).

    Article  CAS  Google Scholar 

  38. W. Serruys, P. van Houtte, and E. Aernoudt: X-ray measurement of residual stresses in textured materials with the aid of orientation distribution functions, in Residual Stresses in Science and Technology, edited by E. Macherauch and V. Hauk (Deutsche Gesellschaft fü r Metallkunde, Oberursel, 1987).

    Google Scholar 

  39. W. Serruys, F. Langouche, P. van Houtte, and E. Aernoudt: Calculation of x-ray elastic constants in isotropic and textured materials, in Proceedings of ICRS 2, edited by G. Beck, S. Denis and A. Simon (Elsevier Applied Science, London, 1989), p. 166.

    Google Scholar 

  40. U. Welzel, M. Leoni and E.J. Mittemeijer: Diffraction elastic constants and stress factors; Grain interaction and stress in macroscopically elastically anisotropic solids: The case of thin films, in Diffraction Analysis of the Microstructure of Materials, edited by E.J. Mittemeijer and P. Scardi (Springer, Berlin, 2004), p. 363.

    Chapter  Google Scholar 

  41. M. Wohlschlögel, W. Baumann, U. Welzel and E.J. Mittemeijer: Determination of depth gradients of grain interaction and stress in Cu thin films. J. Appl. Crystallogr. 41, 1067 (2008).

    Article  CAS  Google Scholar 

  42. A. Kumar, U. Welzel and E.J. Mittemeijer: Depth dependence of elastic grain interaction and mechanical stress: Analysis by x-ray diffraction measurements at fixed penetration/information depths.J. Appl. Phys. 100, 114904 (2006).

    Article  CAS  Google Scholar 

  43. T. Leverenz, B. Eigenmann and E. Macherauch: The sectioned polynomial method for non-destructive determination of residual stress states in machined ceramic materials with steep subsurface gradients. Z. Metallkd. 87, 616 (1996).

    CAS  Google Scholar 

  44. R. Delhez, Th.H. de Keijser, and E.J. Mittemeijer: Role of x-ray diffraction analysis in surface engineering: Investigation of microstructure of nitrided iron and steels. Surf. Eng. 3, 331 (1987).

    Article  CAS  Google Scholar 

  45. P.F. Colijn, E.J. Mittemeijer and H.C.F. Rozendaal: Light-microscopical analysis of nitrided or nitrocarburized iron and steels. Z. Metallkd. 74, 620 (1983).

    CAS  Google Scholar 

  46. A. Wells: Metallographic analysis of compound layers on ferritic nitrocarburized plain low carbon steel. J. Mater. Sci. 20, 2439 (1985).

    Article  CAS  Google Scholar 

  47. M.A.J. Somers and E.J. Mittemeijer: Formation and growth of compound layer on nitrocarburizing iron: Kinetics and microstructural evolution. Surf. Eng. 3, 123 (1987).

    Article  Google Scholar 

  48. D.C. Creagh: X-ray absorption spectra, in International Tables for Crystallography, vol. C, edited by E. Prince (Kluwer, Dordrecht, 2004), p. 213.

    Google Scholar 

  49. C.T. Chantler, K. Olsen, R.A. Dragoset, J. Chang, A.R. Kishore, S.A. Kotochigova and D.S. Zucker: X-ray from factor, attenuation, and scattering tables. Ver. 2.1. (National Institute of Standards and Technology, Gaithersburg, MD, 2005). Available at: http://physics.nist.gov/ffast. Accessed February 27, 2008.

    Google Scholar 

  50. M. Wohlschlögel, T.U. Schülli, B. Lantz and U. Welzel: Application of a single-reflection collimating multilayer optic for x-ray diffraction experiments employing parallel-beam geometry. J. Appl. Crystallogr. 41, 124 (2008).

    Google Scholar 

  51. M. Knapp, C. Baehtz, H. Ehrenberg and H. Fuess: The synchrotron powder diffractometer at beamline B2 at HASYLAB/DESY: Status and capabilities. J. Synchrotron Radiat. 11, 328 (2004).

    CAS  Google Scholar 

  52. E.J. Sonneveld, R. Delhez, Th.H. De Keijser, and E.J. Mittemeijer: Quality of unravelling of experimenal diffraction patterns with artificially varied overlap. Mater. Sci. Forum 79–82, 85 (1991).

    Google Scholar 

  53. U. Welzel, P. Lamparter, M. Leoni and E.J. Mittemeijer: Stress and diffusion in Nb-W bilayers. Mater. Sci. Forum 347–349, 405 (2000).

    Google Scholar 

  54. M.A.J. Somers, N.M. van der Pers, D. Schalkoord and E.J. Mittemeijer: Dependence of the lattice parameter of γ iron nitride, Fe4N1-x, on nitrogen content; Accuracy of the nitrogen absorption data. Metall. Trans. A 20, 1533 (1989).

    Article  Google Scholar 

  55. Y.S. Touloukian, R.K. Kirby, R.E. Taylor and P.D. Desai: Thermal Expansion, Metallic Elements and Alloys (IFI/Plenum, New York, 1975).

    Google Scholar 

  56. U. Welzel, M. Leoni and E.J. Mittemeijer: The determination of stresses in thin films; Modelling elastic grain interaction. Philos. Mag. 83, 603 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Welzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlschlögel, M., Welzel, U. & Mittemeijer, E.J. Residual stress and strain-free lattice-parameter depth profiles in a γ′-Fe4N1-x layer on an α-Fe substrate measured by x-ray diffraction stress analysis at constant information depth. Journal of Materials Research 24, 1342–1352 (2009). https://doi.org/10.1557/jmr.2009.0153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0153

Navigation