Skip to main content
Log in

Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A procedure for predicting the in-plane and out-of-plane thermal conductivities of woven fabric composites through a combined approach of the representative volume element method and heat transfer analyses via finite element is presented. The representative volume element method was implemented using two unit cells established at different length scales with periodic boundary conditions. The procedure was exemplified on a plain weave glass fabric reinforced epoxy resin matrix composite. Sensitivity studies were conducted to quantify the influence of fiber volume fraction and thermal conductivity of the constituent phases on the effective thermal conductivities of the composite. The procedure, which can be implemented into commercial finite element codes, is an efficient tool for the design of woven fabric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
TABLE II.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. X.D. Tang, J.D. Whitcomb, Y.M. Li, and H.J. Sue: Microme-chanics modeling of moisture diffusion in woven composites. Compos. Sci. Technol. 65, 817 (2005).

    Article  CAS  Google Scholar 

  2. S. Li: General unit cells for micromechanical analyses of unidirectional composites. Composites Part A 32, 815 (2001).

    Article  Google Scholar 

  3. S.G. Li and A. Wongsto: Unit cells for micromechanical analyses of particle-reinforced composites. Mech. Mater. 36, 543 (2004).

    Article  Google Scholar 

  4. H.Z. Li, S. Li, Y.C. Wang, E. Kandare, B.K. Kandola, P. Myler, and A.R. Horrocks: Micromechanical finite element analyses of woven fabric composites at elevated temperatures using unit cells at multiple length scales (to be submitted).

  5. A. Dasgupta, R.K. Agarwal, and S.M. Bhandarkar: Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties. Compos. Sci. Technol. 56, 209 (1996).

    Article  CAS  Google Scholar 

  6. A. Dasgupta and R.K. Agarwal: Orthotopic thermal conductivity of plain-weave fabric composites using a homogenization technique. J. Compos. Mater. 26, 2736 (1992).

    Article  CAS  Google Scholar 

  7. D. Bigaud, J.M. Goyheneche, and P. Hamelin and: A global-local nonlinear modelling of effective thermal conductivity tensor of textile-reinforced composites. Composites Part A 32, 1443 (2001).

    Article  Google Scholar 

  8. K. Woo and N.S. Goo: Thermal conductivity of carbon-phenolic 8-harness satin weave composites. Compos. Struct. 66, 521 (2004).

    Article  Google Scholar 

  9. J.K. Farooqi and M.A. Sheikh: Finite element modelling of thermal transport in ceramic-matrix composites. Comput. Mater. Sci. 37, 361 (2006).

    Article  CAS  Google Scholar 

  10. J. Schuster, D. Heider, K. Sharp, and M. Glowania: Thermal conductivities of three-dimensionally woven fabric composites. Compos. Sci. Technol. 65, 2085 (2008).

    Article  Google Scholar 

  11. N. Ahuja and B.J. Schachter: Pattern Models (Wiley, New York, 1983).

    Google Scholar 

  12. ABAQUS Analysis User’s Manual, version 6.5 (ABAQUS Inc., Providence, RI, 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhou Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Li, S. & Wang, Y. Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales. Journal of Materials Research 26, 384–394 (2011). https://doi.org/10.1557/jmr.2010.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.51

Navigation