Skip to main content
Log in

High temperature microcompression and nanoindentation in vacuum

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In small-scale testing at elevated temperatures, impurities in inert gases can pose problems so that testing in vacuum would be desirable. However, previous experiments have indicated difficulties with thermal stability and instrument noise. To investigate this, measurements of the temperature changes in a modified nanoindenter have been made and their influence on the displacement and load measurements is discussed. It is shown that controlling the temperatures of the indenter tip and the sample enabled flat punch indentations of gold, a good thermal conductor, to be carried out over several minutes at 665 °C in vacuum, as well as permitting thermal stability to be quickly re-established in site-specific microcompression experiments. This allowed compression of nickel superalloy micropillars up to sample temperatures of 630 °C with very low levels of oxidation after 48 h. Furthermore, the measured Young moduli, yield and flow stresses were consistent with literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    Article  CAS  Google Scholar 

  2. M.D. Uchic, P.A. Shade, and D. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  3. Z. Duan and A. Hodge: High-temperature nanoindentation: New developments and ongoing challenges. JOM 61, 32 (2009).

    Article  Google Scholar 

  4. N.M. Everitt, M.I. Davies, and J.F. Smith: High temperature nanoindentation—the importance of isothermal contact. Philos. Mag. 91, 1221 (2011).

    Article  CAS  Google Scholar 

  5. J.C. Trenkle, C.E. Packard, and C.A. Schuh: Hot nanoindentation in inert environments. Rev. Sci. Instrum. 81, 073901 (2010).

    Article  Google Scholar 

  6. B.D. Beake and J.F. Smith: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 2179 (2002).

    Article  CAS  Google Scholar 

  7. A. Richter, C.L. Chen, R. Smith, E. McGee, R.C. Thomson, and S.D. Kenny: Hot stage nanoindentation in multi-component Al-Ni-Si alloys: Experiment and simulation. Mater. Sci. Eng., A 494, 367 (2008).

    Article  Google Scholar 

  8. J. Xia, C.X. Li, and H. Dong: Hot-stage nano-characterisations of an iron aluminide. Mater. Sci. Eng., A 354, 112 (2003).

    Article  Google Scholar 

  9. C.E. Packard, J. Schroers, and C.A. Schuh: In situ measurements of surface tension-driven shape recovery in a metallic glass. Scr. Mater. 60, 1145 (2009).

    Article  CAS  Google Scholar 

  10. A. Sawant and S. Tin: High temperature nanoindentation of a Re-bearing single crystal Ni-base superalloy. Scr. Mater. 58, 275 (2008).

    Article  CAS  Google Scholar 

  11. S. Korte and W.J. Clegg: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).

    Article  CAS  Google Scholar 

  12. J.M. Wheeler, R.A. Oliver, and T.W. Clyne: AFM observation of diamond indenters after oxidation at elevated temperatures. Diamond Relat. Mater. 19, 1348 (2010).

    Article  CAS  Google Scholar 

  13. R.C. Weast and M.J. Astle: CRC Handbook of Chemistry and Physics, 59th ed. (CRC Press, Boca Raton, FL, 1978).

    Google Scholar 

  14. S. Korte and W.J. Clegg: Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Philos. Mag. 91, 1150 (2011).

    Article  CAS  Google Scholar 

  15. S. Bouvier and A. Needleman: Effect of the number and orientation of active slip systems on plane strain single crystal indentation. Modell. Simul. Mater. Sci. Eng. 14, 1105 (2006).

    Article  CAS  Google Scholar 

  16. S. Korte, K.K. McLaughlin, I. Farrer, and W.J. Clegg: Observations of flow in InxGa1-xAs multilayers. J. Phys. Conf. Ser. 126, 012052 (2008).

    Article  Google Scholar 

  17. S. Korte, J.S. Barnard, R.J. Stearn, and W.J. Clegg: Deformation of silicon—insights from microcompression testing at 25–500 °C. Int. J. Plast. 27, 1853 (2011).

    Article  CAS  Google Scholar 

  18. B. Moser, K. Wasmer, L. Barbieri, and J. Michler: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).

    Article  CAS  Google Scholar 

  19. F. Östlund, R. Ghisleni, P. Howie, S. Korte, K. Leifer, W.J. Clegg, and J.P. Michler: Ductile-brittle transition in micropillar compression of GaAs at room temperature. Philos. Mag. 91, 1190 (2011).

    Article  Google Scholar 

  20. W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Östlund, D.D. Stauffer, and R.R. Ballarini: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 898 (2009).

    Article  CAS  Google Scholar 

  21. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics (Elsevier, Oxford, 1982).

    Google Scholar 

  22. R.C. Reed: The Superalloys—Fundamentals and Applications (Cambridge University Press, Cambridge, United Kingdom, 2006), p. 388.

    Book  Google Scholar 

  23. H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: The design of accurate micro-compression experiments. Scr. Mater. 54, 181 (2006).

    Article  CAS  Google Scholar 

  24. F. Giuliani: Deformation of Hard Materials, PhD thesis (University of Cambridge, Cambridge, United Kingdom, 2005).

    Google Scholar 

  25. B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials, 2nd ed. (John Wiley & Sons, NJ, 2009), p. 568.

    Google Scholar 

  26. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  27. D. Siebörger, H. Knake, and U. Glatzel: Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases. Mater. Sci. Eng., A 298, 26 (2001).

    Article  Google Scholar 

  28. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  29. D. Tabor: The Hardness of Metals (Oxford University Press, Oxford, 1951), p. 175.

    Google Scholar 

  30. M.S. Hook: The effects of high temperature oxidation and exposure on nickel-base superalloys and turbine blade coatings, PhD thesis (University of Cambridge, Cambridge, United Kingdom, 2004).

    Google Scholar 

Download references

Acknowledgments

The authors thank H. Mathur (University of Cambridge), for supplying the CMSX-4 sample, Dr. S. Goodes (Micro Materials Ltd., United Kingdom), for the provision of custom changes to the equipment software and his continuous support, and Dipl.-Ing. S. Hostettler (Synton-MDP, AG, Switzerland), for his help with the indenter tip design. This research was funded by the Engineering and Physical Sciences Research Council and Rolls-Royce plc Strategic Partnership “Structural Metallic Systems For Advanced Gas Turbine Applications” (EP/H500375/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Korte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korte, S., Stearn, R.J., Wheeler, J.M. et al. High temperature microcompression and nanoindentation in vacuum. Journal of Materials Research 27, 167–176 (2012). https://doi.org/10.1557/jmr.2011.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.268

Navigation