Skip to main content
Log in

Densification kinetics, phase assemblage and hardness of spark plasma sintered Cu–10 wt% TiB2 and Cu–10 wt% TiB2–10 wt% Pb composites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work demonstrates the synthesis of Cu–10 wt% TiB2 composites with a theoretical density of more than 90% by tailoring the spark plasma sintering (SPS) conditions in the temperature range of 400–700 °C. Interestingly, 10 wt% Pb addition to Cu–10 wt% TiB2 lowers the sinter density and the difference in the densification behavior of the investigated compositions was discussed in reference to the current profile recorded during a SPS cycle. The sintering kinetics and phase assemblage were also discussed in reference to surface melting of the constituents prior to bulk melting temperature, temperature dependent wettability of Pb on Cu, diffusion kinetics of Cu as well as the formation of various oxides. An important result is that a high hardness of around 2 GPa and relative density close to 92% ρtheoretical was achieved for the Cu–10 wt% TiB2–10 wt% Pb composite, and such a combination has never been achieved before using any conventional processing route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
TABLE II.
FIG. 12.
TABLE III.

Similar content being viewed by others

References

  1. J.R. Groza and J.C. Gibeling: Principles of particle selection for dispersion–strengthened copper. Mater. Sci. Eng., A 171(1–2), 115 (1993).

    Article  Google Scholar 

  2. B. Basu, G.B. Raju, and A.K. Suri: Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 51(6), 352 (2006).

    Article  CAS  Google Scholar 

  3. Z.A. Munir, U.A. Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763 (2006).

    Article  CAS  Google Scholar 

  4. R.G. Munro: Material properties of titanium diboride. J. Res. Nat. Inst. Stand. Technol. 105(5), 709 (2000).

    Article  CAS  Google Scholar 

  5. M. Guo, K. Shen, and M. Wang: Relationship between microstructure, properties and reaction conditions for Cu–TiB2 alloys prepared by in situ reaction. Acta Mater. 57(15), 4568 (2009).

    Article  CAS  Google Scholar 

  6. X.H. Zhang, C. Yan, and Z.Z. Yu: In-situ combustion synthesis of ultrafine TiB2 particles reinforced Cu matrix composite. J. Mater. Sci. 39(14), 4683 (2004).

    Article  CAS  Google Scholar 

  7. M. Lopez, D. Corredor, C. Camurri, V. Vergara, and J. Jimenez: Performance and characterization of dispersion strengthened Cu–TiB2 composite for electrical use. Mater. Charact. 55(4–5), 252 (2005).

    Article  CAS  Google Scholar 

  8. Z.Y. Ma and S.C. Tjong: High temperature creep behavior of in–situ TiB2 particulate reinforced copper–based composite. Mater. Sci. Eng., A 284(1–2), 70 (2000).

    Article  Google Scholar 

  9. S.J. Dong, Y. Zhou, Y.W. Shi, and B.H. Chang: Formation of a TiB2–reinforced copper–based composite by mechanical alloying and hot pressing. Metall. Mater. Trans. A 33A(4), 1275 (2002).

    Article  CAS  Google Scholar 

  10. P. Yih and D.D.L. Chung: Titanium diboride copper-matrix composites. J. Mater. Sci. 32(7), 1703 (1997).

    Article  CAS  Google Scholar 

  11. C. Biselli, D.G. Morris, and N. Randall: Mechanical alloying of high strength copper alloys containing TiB2 and Al2O3 dispersoid particles. Scr. Metall. Mater. 30(10), 1327 (1994).

    Article  CAS  Google Scholar 

  12. Y.S. Kwon, D.V. Dudina, M.A. Korchagin, and O.I. Lomovsky: Microstructure changes in TiB2–Cu nanocomposite during sintering. J. Mater. Sci. 39(16–17), 5325 (2004).

    Article  CAS  Google Scholar 

  13. A.S. Sharma, K. Biswas, B. Basu, and D. Chakravarty: Spark plasma sintering of nanocrystalline Cu and Cu–10 wt% Pb alloy. Metall. Mater. Trans. A 42A(7), 2072 (2011).

    Article  Google Scholar 

  14. Q.S. Mei and K. Lu: Melting and superheating of crystalline solids: From bulk to nanocrystals. Prog. Mater. Sci. 52(8), 1175 (2007).

    Article  CAS  Google Scholar 

  15. B. Pluis, A.W.D. Gon, J.W.M. Frenken, and J.F. Veen: Crystal face dependence of surface melting. Phys. Rev. Lett. 59(23), 2678 (1987).

    Article  CAS  Google Scholar 

  16. H.M. Pinxteren and J.W.M. Frenken: Incomplete melting of Pb (001) and vicinal surfaces. Surf. Sci. 275(3), 383 (1992).

    Article  Google Scholar 

  17. H. Hakkinen and M. Manninen: Computer simulation of disordering and premelting of low index faces of copper. Phys. Rev. B 46(3), 1725 (1992).

    Article  CAS  Google Scholar 

  18. R.M. German, P. Suri, and S.J. Park: Review: Liquid phase sintering. J. Mater. Sci. 44(1), 1 (2009).

    Article  CAS  Google Scholar 

  19. J.F. Veen: Melting and freezing at surfaces. Surf. Sci. 433–435, 1 (1999).

    Article  Google Scholar 

  20. L. Felberbaum, A. Rossoll, and A. Mortensen: A stereoscopic method for dihedral angle measurement. J. Mater. Sci. 40(12), 3121 (2005).

    Article  CAS  Google Scholar 

  21. D. Empl, L. Felberbaum, V. Laporte, D. Chatain, and A. Mortensen: Dihedral angles in Cu–1 wt% Pb: Grain boundary energy and grain boundary triple line effects. Acta Mater. 57(8), 2527 (2009).

    Article  CAS  Google Scholar 

  22. Smithells Metals Reference Book, 7th ed. edited by E.A. Brandes and G.B. Brook (Butterworth–Heinemann, London, 1992).

    Google Scholar 

Download references

Acknowledgments

The use of SPS facility at IIT Kanpur, procured with partial funding from the Department of Science and Technology, Government of India as well as CARE funding from IIT Kanpur, is gratefully acknowledged. The authors would also like to acknowledge the help rendered by Mr. C.S. Tiwary in obtaining EPMA results and Drs. Ubhi Singh and Ritwik Basu for EBSD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.S., Mishra, N., Biswas, K. et al. Densification kinetics, phase assemblage and hardness of spark plasma sintered Cu–10 wt% TiB2 and Cu–10 wt% TiB2–10 wt% Pb composites. Journal of Materials Research 28, 1517–1528 (2013). https://doi.org/10.1557/jmr.2013.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.119

Navigation