Skip to main content
Log in

Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube (Fe3O4-MWCNT) nanocomposites were prepared by the in situ polymerization technique. The presence of Fe3O4 nanoparticles on the surface of the MWCNTs was confirmed by x-ray diffraction and transmission electron microscopic studies. The saturation magnetization value of Fe3O4-MWCNT was 0.23 emu/g. The glycidyl ether of bisphenol-A epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.4–38.5 MPa), scratch hardness (3.0–8.5 kg), and thermal stability (241–292 °C) with the increase of loading of Fe3O4-MWCNT (0–2 wt%). The nanocomposites possess good shape fixity over the repeated cycles of test. The nanocomposites also showed good shape recovery under the application of microwave irradiation. The shape recovery speed was found to be increased with the increase of the content of Fe3O4-MWCNT. Thus, the studied thermosetting nanocomposites have potential to be used as noncontact shape memory materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
SCHEME 1.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE II.
TABLE III.
FIG. 8.
FIG. 9.
FIG. 10.
TABLE IV.
FIG. 11.

Similar content being viewed by others

References

  1. W. Small, P. Singhal, T.S. Wilson, and D.J. Maitland: Biomedical applications of thermally activated shape memory polymer. J. Mater. Chem. 20, 3356 (2010).

    Article  CAS  Google Scholar 

  2. K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, and T.J. White: Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318 (2011).

    Article  CAS  Google Scholar 

  3. C.M. Yakacki: Shape-memory and shape-changing polymers. Polym. Rev. 53, 1 (2013).

    Article  CAS  Google Scholar 

  4. H.F. Lee, and H.H. Yu: Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 7, 3801 (2011).

    Article  CAS  Google Scholar 

  5. Y. Cai, J.S. Jiang, B. Zheng, and M.R. Xie: Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(ε-caprolactone)-polyurethane nanocomposites. J. Appl. Polym. Sci. 127, 49 (2013).

    Article  CAS  Google Scholar 

  6. M. Haghayegh and G.M.M. Sadeghi: Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties. Polym. Compos. 33, 843 (2012).

    Article  CAS  Google Scholar 

  7. M.K. Jang, A. Hartwig, and B.K. Kim: Shape memory polyurethanes cross-linked by surface modified silica particles. J. Mater. Chem. 19, 1166 (2009).

    Article  CAS  Google Scholar 

  8. I.A. Rousseau: Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 48, 2075 (2008).

    Article  CAS  Google Scholar 

  9. J.M. Cuevas, R. Rubio, J.M. Laza, J.L. Vilas, M. Rodriguez, and L.M. Leon: Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater. Struct. 21, 035004 (2012).

    Article  Google Scholar 

  10. J. Xu, W. Shi, and W. Pang: Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47, 457 (2006).

    Article  CAS  Google Scholar 

  11. C.S. Zhang, and Q.Q. Ni: Bending behavior of shape memory polymer based laminatesCompos. Struct. 78, 153 (2007).

    Article  Google Scholar 

  12. H. Deka and N. Karak: Shape-memory property and characterization of epoxy resin-modified Mesua ferrea L. seed oil-based hyperbranched polyurethane. J. Appl. Polym. Sci. 116, 106 (2010).

    Article  CAS  Google Scholar 

  13. R. Rajasekaran and M. Alagar: Mechanical properties of bismaleimides modified polysulfone epoxy matrices. Int. J. Polym. Mater. 56, 911 (2007).

    Article  CAS  Google Scholar 

  14. K.P. Unnikrishnan and E.T. Thachil: Toughening of epoxy resins. Des. Monomers Polym. 9, 129 (2006).

    Article  CAS  Google Scholar 

  15. M. Hemmati, A. Narimani, H. Shariatpanahi, A. Fereidoon, and M.G. Ahangari: Study on morphology, rheology and mechanical properties of thermoplastic elastomer polyolefin (TPO)/carbon nanotube nanocomposites with reference to the effect of polypropylene-grafted-maleic anhydride (PP-g-MA) as a compatibilizer. Int. J. Polym. Mater. 60, 384 (2011).

    Article  CAS  Google Scholar 

  16. M. Rahmat and P. Hubert: Carbon nanotube–polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 72, 72 (2011).

    Article  CAS  Google Scholar 

  17. Y.T. Wang, C.S. Wang, H.Y. Yin, L.L. Wang, H.F. Xie, and R.S. Cheng: Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties. Express Polym. Lett. 6, 719 (2012).

    Article  CAS  Google Scholar 

  18. J.C. Zhao, F.P. Du, X.P. Zhou, W. Cui, X.M. Wang, H. Zhu, X.L. Xie, and Y.W. Mei: Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Composites Part B 42, 2111 (2011).

    Article  Google Scholar 

  19. S. Taheri, E. Nakhlband, and H. Nazockdast: Microstructure and multiwall carbon nanotube partitioning in polycarbonate/acrylonitrile-butadiene-styrene/multiwall carbon nanotube nanocomposites. Polym. Plast. Technol. Eng. 52, 300 (2013).

    Article  CAS  Google Scholar 

  20. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, and S.H. Chan: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).

    Article  CAS  Google Scholar 

  21. P. Song, Y. Shen, B. Du, Z. Guo, and Z. Fang: Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene. Nanoscale 1, 118 (2009).

    Article  CAS  Google Scholar 

  22. J. Khanderi, R.C. Hoffmann, A. Gurlo, and J.J. Schneider: Synthesis and sensoric response of ZnO decorated carbon nanotubes. J. Mater. Chem. 19, 5039 (2009).

    Article  CAS  Google Scholar 

  23. Q. Zhang, M. Zhu, Q. Zhang, Y. Li, and H. Wang: The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos. Sci. Technol. 69, 633 (2009).

    Article  CAS  Google Scholar 

  24. L. Kong, X. Lu, and W. Zhang: Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J. Solid State Chem. 181, 628 (2008).

    Article  CAS  Google Scholar 

  25. H.Y. Li, C.M. Chang, K.Y. Hsu, and Y.L. Liu: Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 22, 4855 (2012).

    Article  CAS  Google Scholar 

  26. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, and X. Liu: A novel carbon nanotubes/Fe3O4 inorganic hybrid material: Synthesis, characterization and microwave electromagnetic properties. J. Magn. Magn. Mater. 323, 1006 (2011).

    Article  CAS  Google Scholar 

  27. S. Ni, S. Lin, Q. Pan, F. Yang, K. Huang, and D. He: Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J. Phys. D: Appl. Phys. 42, 055004 (2009).

    Article  Google Scholar 

  28. S. Dutta and N. Karak: Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym. Int. 55, 49 (2006).

    Article  CAS  Google Scholar 

  29. H. Kalita and N. Karak: Mesua ferrea L. seed oil-based hyperbranched shape memory polyurethanes: Effect of multifunctional component. Polym. Eng. Sci. 52, 2454 (2012).

    Article  CAS  Google Scholar 

  30. Y.C. Jung, H.H. So, and J.W. Cho: Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J. Macromol. Sci. Phys. 45, 453 (2006).

    Article  CAS  Google Scholar 

  31. Y. Zhang, R.J. Heath, and D.J. Hourston: Morphology, mechanical properties, and thermal stability of polyurethane–epoxide resin interpenetrating polymer network rigid foams. J. Appl. Polym. Sci. 75, 406 (2000).

    Article  CAS  Google Scholar 

  32. S.D. Desai, A.L. Emanuel, and V.K. Sinha: Polyester polyol-based polyurethane adhesive; effect of treatment on rubber surface. J. Polym. Res. 10, 141 (2003).

    Article  CAS  Google Scholar 

  33. S. Thakur and N. Karak: Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331 (2012).

    Article  CAS  Google Scholar 

  34. J.O. Park, K.Y. Rhee, and S.J. Park: Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites. Appl. Surf. Sci. 256, 6945 (2010).

    Article  CAS  Google Scholar 

  35. H. Deka, N. Karak, R.D. Kalita, and A.K. Buragohain: Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013 (2010).

    Article  CAS  Google Scholar 

  36. H. Kalita and N. Karak: Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites as shape memory materials. Polym. Adv. Technol. doi: 10.1002/pat.3149.

  37. S. Rana, N. Karak, J.W. Cho, and Y.H. Kim: Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites. Nanotechnology 19, 495707 (2008).

    Article  Google Scholar 

  38. S.K. Yadav, S.S. Mahapatra, and J.W. Cho: Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes. Polymer 53, 2023 (2012).

    Article  CAS  Google Scholar 

  39. S.S. Mahapatra, S.K. Yadav, H.J. Yoo, J.W. Cho, and J.S. Park: Highly branched polyurethane: Synthesis, characterization and effects of branching on dispersion of carbon nanotubes. Composites Part B 45, 165 (2013).

    Article  CAS  Google Scholar 

  40. L. Viry, C. Mercader, P. Miaudet, C. Zakri, A. Derre, A. Kuhn, M. Maugey, and P. Poulin: Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487 (2010).

    Article  CAS  Google Scholar 

  41. W. Zhou, X. Hu, X. Bai, S. Zhou, C. Sun, J. Yan, and P. Chen: Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 3, 3839 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express their gratitude and thanks to the research project assistance granted by the Department of Science and Technology (DST), India, through Grant No. SR/S3/ME/0020/2009-SERC, dated 9th July, 2010, SAP (University Grants Commission, UGC), India through Grant No. F.3-30/2009 (SAP-II) and FIST program-2009 (DST), India through the Grant No.SR/FST/CSI-203/209/1 dated 06.05.2010. Mangesh Mahajan is gratefully acknowledged for the magnetic measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Karak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalita, H., Karak, N. Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials. Journal of Materials Research 28, 2132–2141 (2013). https://doi.org/10.1557/jmr.2013.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.213

Navigation