Skip to main content
Log in

Spray pyrolysis of phase pure AgCu particles using organic cosolvents

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nano- and micron-sized metal particles have important applications in catalysis and in the medical and electronic industries. For applications requiring high conductivity, such as thick film conductive pastes or isotropic conductive adhesives, AgCu particles combine high conductivity with advantages of lower costs. Here, we report the generation of AgCu particles by spray pyrolysis, a process that has the advantages of simple experimental setup, large-scale production ability, and controllable particle size. Solutions of copper nitrate and silver nitrate dissolved in deionized water with either 40 vol% ethanol (ET) or 40 vol% ethylene glycol (EG) were used as the precursor. Phase separation was observed during the generation of AgCu particles, and the particles were mainly Ag-rich and Cu-rich solid solutions. The short reactor residence time experiments indicated that both the cosolvent properties and operating conditions affect the particle formation process and change the structure of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. L. Lewis: Chemical catalysis by colloids and clusters. Chem. Rev. 93(8), 2693 (1993).

    CAS  Google Scholar 

  2. S. Link and M. El-Sayed: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103(40), 8410 (1999).

    CAS  Google Scholar 

  3. F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, and T. Kawasaki: Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64(6), 893 (2004).

    CAS  Google Scholar 

  4. L. Sheppard: Progress continues in capacitor technology. Am. Ceram. Soc. Bull. 72(3), 45 (1993).

    Google Scholar 

  5. S.J. Kim, E.A. Stach, and C.A. Handwerker: Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles. Appl. Phys. Lett. 96(14), 144101 (2010).

    Google Scholar 

  6. M.J. Yim, Y. Li, K.S. Moon, and C.P. Wong: High performance anisotropic conductive adhesives using copper particles with an anti-oxidant coating layer. J. Electron. Packag. 132(1), 011007 (2010).

    Google Scholar 

  7. Y. Tao, Y. Xia, H. Wang, F.H. Gong, H.P. Wu, and G.L. Tao: Novel isotropical conductive adhesives for electronic packaging application. IEEE Trans. Adv. Packag. 32(3), 589 (2009).

    CAS  Google Scholar 

  8. D.D. Lu and C.P. Wong: Recent advances in developing high performance isotropic conductive adhesives. J. Adhes. Sci. Technol. 22(8–9), 835 (2008).

    CAS  Google Scholar 

  9. J. Liu, X. Li, and X. Zeng: Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. J. Alloys Compd. 494(1–2), 84 (2010).

    CAS  Google Scholar 

  10. S. Kang and S. Purushothaman: Development of conducting adhesive materials for microelectronic applications. J. Electron. Mater. 28(11), 1314 (1999).

    CAS  Google Scholar 

  11. H.P. Wu, X.J. Wu, M.Y. Ge, G.Q. Zhang, Y.W. Wang, and J.Z. Jiang: Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes. Compos. Sci. Technol. 67(6), 1182 (2007).

    CAS  Google Scholar 

  12. J. Speight: Lange’s Handbook of Chemistry, 70th Anniversary Edition, 16th ed. (McGraw-Hill Professional, New York, 2004).

    Google Scholar 

  13. A. Gurav, T. Kodas, T. Pluym, and Y. Xiong: Aerosol processing of materials. Aerosol Sci. Technol. 19(4), 411 (1993).

    CAS  Google Scholar 

  14. S. Gurmen, B. Ebin, S. Stopic, and B. Friedrich: Nanocrystalline spherical iron-nickel (Fe-Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). J. Alloys Compd. 480(2), 529 (2009).

    CAS  Google Scholar 

  15. S. Eroglu, S.C. Zhang, and G.L. Messing: Synthesis of nanocrystalline Ni-Fe alloy powders by spray pyrolysis. J. Mater. Res. 11(9), 2131 (1996).

    CAS  Google Scholar 

  16. T. Pluymt, T. Kodas, L. Wang, and H. Glicksman: Silver-palladium alloy particle production by spray pyrolysis. J. Mater. Res. 10(7), 1661 (1995).

    Google Scholar 

  17. N. Aoyagi, T. Ookawa, R. Ueyama, N. Ogata, and T. Ogihara: Preparation of Ag-Pd alloy particles by ultrasonic spray pyrolysis and application to electrode for LTCC. Electroceramics in Japan VI 248, 187 (2003).

    CAS  Google Scholar 

  18. C. Jung, H. Lee, C. Kim, and S. Bhaduri: Synthesis of Cu-Ni alloy powder directly from metal salts solution. J. Nanopart. Res. 5(3–4), 383 (2003).

    Google Scholar 

  19. S.Y. Yang, K. Kim, and S.G. Kim: Reductive crystallization of each metal in composite particles spray-pyrolyzed from silver/nickel mixed nitrates. Korean J. Chem. Eng. 25(2), 359 (2008).

    CAS  Google Scholar 

  20. H.C. Jang, S.H. Ju, and Y.C. Kang: Spherical shape Ni-Co alloy powders directly prepared by spray pyrolysis. J. Alloys Compd. 478(1–2), 206 (2009).

    CAS  Google Scholar 

  21. S.H. Ju, H.C. Jang, Y.C. Kang, and D.W. Kim: Characteristics of Sn-Ni alloy powders directly prepared by spray pyrolysis. J. Alloys Compd. 478(1–2), 177 (2009).

    CAS  Google Scholar 

  22. J.H. Kim, V.I. Babushok, T.A. Germer, G.W. Mulholland, and S.H. Ehrman: Cosolvent-assisted spray pyrolysis for the generation of metal particles. J. Mater. Res. 18(7), 1614 (2003).

    CAS  Google Scholar 

  23. K. Zhong, G. Peabody, H. Glicksman, and S. Ehrman: Particle generation by cosolvent spray pyrolysis: Effects of ethanol and ethylene glycol. J. Mater. Res. 27(19), 2540 (2012).

    CAS  Google Scholar 

  24. B. Xia, I.W. Lenggoro, and K. Okuyama: The roles of ammonia and ammonium bicarbonate in the preparation of nickel particles from nickel chloride. J. Mater. Res. 15(10), 2157 (2000).

    CAS  Google Scholar 

  25. B. Xia, I. Lenggoro, and K. Okuyama: Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl2·6H2O precursor containing ammonia. J. Mater. Sci. 36(7), 1701 (2001).

    CAS  Google Scholar 

  26. K.N. Kim and S.G. Kim: Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 145(3), 155 (2004).

    CAS  Google Scholar 

  27. V. Jokanovic, B. Colovic, S. Stopic, and B. Friedrich: Designing of copper nanoparticle size formed via aerosol pyrolysis. Metall. Mater. Trans. A 43(11), 4427 (2012).

    CAS  Google Scholar 

  28. G. Jian, L. Liu, and M.R. Zachariah: Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators. Adv. Funct. Mater. 23(10), 1341 (2013).

    CAS  Google Scholar 

  29. K.L. Tsai and J.L. Dye: Nanoscale metal particles by homogeneous reduction with alkalides or electrides. J. Am. Chem. Soc. 113(5), 1650 (1991).

    CAS  Google Scholar 

  30. H. Hirai, Y. Nakao, and N. Toshima: Colloidal rhodium in poly(vinylpyrrolidone) as hydrogenation catalyst for internal olefins. Chem. Lett. 7(5), 545 (1978).

    Google Scholar 

  31. L. Kurihara, G. Chow, and P. Schoen: Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater. 5(6), 607 (1995).

    CAS  Google Scholar 

  32. F. Fievet, F. Fievetvincent, J. Lagier, B. Dumont, and M. Figlarz: Controlled nucleation and growth of micrometer size copper particles prepared by the polyol process. J. Mater. Chem. 3(6), 627 (1993).

    CAS  Google Scholar 

  33. G. Cardenas-Trivino, K.J. Klabunde, and E.B. Dale: Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. 14. Langmuir 3(6), 986 (1987).

    CAS  Google Scholar 

  34. N. Satoh and K. Kimura: Metal colloids produced by means of gas evaporation technique. 5. Colloidal dispersion of Au fine particles to hexane, poor dispersion medium for metal sol. Bull. Chem. Soc. Jpn. 62(6), 1758 (1989).

    CAS  Google Scholar 

  35. S. Jain, D.J. Skamser, and T.T. Kodas: Morphology of single-component particles produced by spray pyrolysis. Aerosol Sci. Technol. 27(5), 575 (1997).

    CAS  Google Scholar 

  36. D. Majumdar, T.A. Shefelbine, T.T. Kodas, and H.D. Glicksman: Copper (I) oxide powder generation by spray pyrolysis. J. Mater. Res. 11(11), 2861 (1996).

    CAS  Google Scholar 

  37. K. Nagashima, T. Iwaida, H. Sasaki, Y. Katatae, and A. Kato: Preparation of fine, spherical copper particles by spray pyrolysis technique. Nippon Kagaku Kaishi 1, 17 (1990).

    Google Scholar 

  38. K. Zhong, G. Peabody, E. Blankenhorna, H. Glicksman, and S. Ehrman: A spray pyrolysis approach for the generation of patchy particles. Aerosol Sci. Technol. 47(2), 1 (2013).

    Google Scholar 

  39. A.G. Venetsanos, P. Adams, and I. Azkarate: On the use of hydrogen in confined spaces: Results from the internal project InsHyde. Int. J. Hydrogen Energy 36(3), 2693 (2011).

    CAS  Google Scholar 

  40. H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).

    Google Scholar 

  41. H.R. Pruppacher and J.D. Klett: Microphysics of Clouds and Precipitation (Springer, New York, 1996).

    Google Scholar 

  42. S.K. Friedlander: Smoke, dust, and haze: Fundamentals of aerosol behavior (Wiley, Hoboken, NJ, 1977).

    Google Scholar 

  43. J. Yang, T.C. Deivaraj, H.P. Too, and J.Y. Lee: Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20(10), 4241 (2004).

    CAS  Google Scholar 

  44. F. Fievet, J. Lagier, B. Blin, B. Beaudoin, and M. Figlarz: Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles. Solid State Ionics 32–33, 198 (1989).

    Google Scholar 

  45. B. Lvov and A. Novichikhin: Mechanism of thermal decomposition of hydrated copper nitrate in vacuo. Spectrochim. Acta, Part B 50(12), 1459 (1995).

    Google Scholar 

  46. J. Jackson, R. Fonseca, and J. Holcombe: Mass spectral studies of thermal decomposition of metal nitrates. Spectrochim. Acta, Part B 50(12), 1449 (1995).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (Grant No. CBET-0755703) and by the DuPont Company. We also acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the National Science Foundation as a Materials Research Science and Engineering Center Shared Experimental Facility. E.B. acknowledges support from MTECH ASPIRE Program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, K., Peabody, G., Blankenhorn, E. et al. Spray pyrolysis of phase pure AgCu particles using organic cosolvents. Journal of Materials Research 28, 2753–2761 (2013). https://doi.org/10.1557/jmr.2013.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.257

Navigation