Skip to main content

Advertisement

Log in

Electrospun SrTiO3 nanofibers for photocatalytic hydrogen generation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Homogenous strontium titanate (SrTiO3) nanofibers were prepared via the electrospinning of precursor solutions containing both strontium and titanium salts. Photocatalytic activities of these SrTiO3 nanofibers for hydrogen generation from water were examined and compared to that of SrTiO3 nanoparticles. The nanofibers calcined at 700 °C showed the highest photocatalytic activity of 167 μmol/h/g among the SrTiO3 samples tested. The high activity was attributed to the ideal stoichiometric ratio of Ti/Sr, small crystallite size, high crystallinity, mesoporous structure, large surface area, and appropriate energy gap. These were confirmed through field emission scanning electron microscopic with energy dispersive spectroscopic observations, x-ray diffraction patterns, N2 gas absorption–desorption isotherm measurements, photoelectron yield spectroscopy in air, and UV-visible spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. G.W. Crabtree, M.S. Dresselhaus, and M.V. Buchanan: The hydrogen economy. Phys. Today 57(12), 39 (2004).

    Article  CAS  Google Scholar 

  2. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238(5358), 37 (1972).

    Article  CAS  Google Scholar 

  3. R.U.E. T Lam, L.G.J. de Haart, A.W. Wiersma, G. Blasse, A.H.A. Tinnemans, and A. Mackor: The sensitization of SrTiO3 photoanodes by doping with various transition metal ions. Mater. Res. Bull. 16(12), 1593 (1981).

    Article  CAS  Google Scholar 

  4. X. Zhou, J. Shi, and C. Li: Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (metal = Mn, Fe, and Co). J. Phys. Chem. A 115(16), 8305 (2011).

    CAS  Google Scholar 

  5. M. Ashokkumar: An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen Energy 23(6), 427 (1998).

    Article  CAS  Google Scholar 

  6. A. Kudo, A. Tanaka, K. Domen, and T. Onishi: The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities. J. Catal. 111(2), 296 (1988).

    Article  CAS  Google Scholar 

  7. T. Puangpetch, T. Sreethawong, and S. Chavadej: Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading. Int. J. Hydrogen Energy 35(13), 6531 (2010).

    Article  CAS  Google Scholar 

  8. J.W. Liu, G. Chen, Z.H. Li, and Z.G. Zhang: Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3. J. Solid State Chem. 179(12), 3704 (2006).

    Article  CAS  Google Scholar 

  9. K. Domen, S. Naito, T. Onishi, and K. Tamaru: Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst. Chem. Phys. Lett. 92(4), 433 (1982).

    Article  CAS  Google Scholar 

  10. K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda: Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J. Phys. Chem. 90(2), 292 (1986).

    Article  CAS  Google Scholar 

  11. T. Puangpetch, T. Sreethawong, S. Yoshikawa, and S. Chavadej: Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J. Mol. Catal. A: Chem. 312(1–2), 97 (2009).

    Article  CAS  Google Scholar 

  12. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1(5), 1140 (2009).

    Article  CAS  Google Scholar 

  13. L. Macaraig, S. Chuangchote, and T. Sagawa: Fabrication of SrTiO3 nanofibers for hydrogen production. Mater. Res. Soc. Symp. Proc. 1408, (2012).

  14. T. Cao, Y. Li, C. Wang, C. Shao, and Y. Liu: A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6), 2946 (2011).

    Article  CAS  Google Scholar 

  15. L. Macaraig, S. Chuangchote, and T. Sagawa: Fabrication of strontium titanate nanofibers via electrospinning, in Zero-Carbon Energy Kyoto, Vol. 2012, edited by T. Yao (Springer Verlag, Japan, Tokyo, 2013), p. 141.

    Google Scholar 

  16. A. Guchhait and A.J. Pal: Copper-diffused AgInS2 ternary nanocrystals in hybrid bulk-heterojunction solar cells: Near-infrared active nanophotovoltaics. ACS Appl. Mater. Interfaces 5(10), 4181 (2013).

    Article  CAS  Google Scholar 

  17. R. Wongmaneerung, R. Yimnirun, and S. Ananta: Effect of vibro-milling time on phase formation and particle size of lead titanate nanopowders. Mater. Lett. 60(12), 1447 (2006).

    Article  CAS  Google Scholar 

  18. V. Subramanian, R.K. Roeder, and E.E. Wolf: Synthesis and UV−visible-light photoactivity of noble-metal−SrTiO3 composites. Ind. Eng. Chem. Res. 45(7), 2187 (2006).

    Article  CAS  Google Scholar 

  19. E. Roduner: Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35(7), 583 (2006).

    Article  CAS  Google Scholar 

  20. K.S.W. Sing: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603 (1985).

    Article  CAS  Google Scholar 

  21. Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, G.J.A.A. de Soler-Illia, and C. Sanchez: Optimised photocatalytic activity of grid-like mesoporous TiO2 films: Effect of crystallinity, pore size distribution, and pore accessibility. J. Mater. Chem. 16(1), 77 (2006).

    Article  CAS  Google Scholar 

  22. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69 (1995).

    Article  CAS  Google Scholar 

  23. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, and N. Mizutani: Band-gap energies of sol-gel-derived SrTiO3 thin films. Appl. Phy. Lett. 79(23), 3767 (2001).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are indebted to Prof. Keiichi N. Ishihara and Dr. Eiji Yamasue of Graduate School of Energy Science, Kyoto University for the use of TG-DTA apparatus. This work was partly supported by the “Energy Science in the Age of Global Warming” of Global Center of Excellence (G-COE) program (J-051) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sagawa.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macaraig, L., Chuangchote, S. & Sagawa, T. Electrospun SrTiO3 nanofibers for photocatalytic hydrogen generation. Journal of Materials Research 29, 123–130 (2014). https://doi.org/10.1557/jmr.2013.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.259

Keywords

Navigation