Skip to main content
Log in

Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2Ox bulk materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermoelectric properties of Bi2Sr2Co2Ox (BSC-222) bulk materials prepared by three different processing methods, i.e., conventional sintering, hot pressing, or partial melting, were investigated and compared. The electrical current, temperature difference for Seebeck coefficient, and thermal diffusion were measured in the same direction. The hot pressing and partial melting are effective processing methods for improving the electrical transport property in BSC-222 bulk materials due to an improvement of density in hot-pressed samples or by grain growth during partial melting process. For partially melted samples, a decrease in the thermal conductivity is also observed. The highest dimensionless thermoelectric figure of merit (ZT) values have been obtained in the sample prepared by partial melting method, for which ZT has been increased by a factor of 2.7 by comparison with bulk materials prepared by conventional sintering. At 700 °C in air, ZT value reaches 0.27 for partially melted Bi2Sr2Co2Ox bulk materials. This study shows that optimized electrical and thermal transport properties can be achieved in BSC-222 bulk materials possessing microstructures with both large average grain size and appropriate bulk density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  2. I. Terasaki, Y. Sasago, and K. Uchinokura: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56(20), 12685 (1997).

    Article  Google Scholar 

  3. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).

    Article  CAS  Google Scholar 

  4. A. Maignan, S. Hébert, M. Hervieu, C. Michel, D. Pelloquin, and D. Khomskii: Magnetoresistance and magnetothermopower properties of Bi/Ca/Co/O and Bi(Pb)/Ca/Co/O misfit layer cobaltites. J. Phys.: Condens. Matter 15, 2711 (2003).

    CAS  Google Scholar 

  5. R. Funahashi and M. Shikano: Bi2Sr2Co2Oy whiskers for high thermoelectric figure of merit. Appl. Phys. Lett. 81(8), 1459 (2002).

    Article  CAS  Google Scholar 

  6. H. Leligny, D. Grebille, O. Perez, A.C. Masset, M. Hervieu, and B. Raveau: A five-dimensional structural investigation of the misfit layer compound [Bi0.87SrO2]2[CoO2]1.82. Acta Crystallogr., Sect. B 56, 173 (2000).

    Article  Google Scholar 

  7. R. Funahashi, I. Matsubara, and S. Sodeoka: Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76(17), 2385 (2000).

    Article  CAS  Google Scholar 

  8. W. Shin and N. Murayama: Thermoelectric properties of (Bi,Pb)-Sr-Co-O oxide. J. Mater. Res. 15(2), 382 (2000).

    Article  CAS  Google Scholar 

  9. Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W.S. Seo, and K. Koumoto: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13(5), 1094 (2003).

    Article  CAS  Google Scholar 

  10. K. Shinzato and T. Baba: A laser flash apparatus for thermal diffusivity and specific heat capacity measurements. J. Therm. Anal. Calorim. 64, 413 (2001).

    Article  CAS  Google Scholar 

  11. K. Rubešová, T. Hlásek, V. Jakeš, D. Sedmidubský, and J. Hejtmánek: Water based sol-gel methods used for Bi-222 thermoelectrics preparation. J. Sol-Gel Sci. Technol. 64(1), 93 (2012).

    Article  Google Scholar 

  12. H.C. Hsu, W.L. Lee, K.K. Wu, Y.K. Kuo, B.H. Chen, and F.C. Chou: Enhanced thermoelectric figure-of-merit ZT for hole-doped Bi2Sr2Co2Oy through Pb substitution. J. Appl. Phys. 111, 103709 (2012).

    Article  Google Scholar 

  13. S. Wang, Z. Bai, H. Wang, Q. Lü, J. Wang, and G. Fu: High temperature thermoelectric properties of Bi2Sr2Co2Oy/Ag composites. J. Alloys Compd. 554, 254 (2013).

    Article  CAS  Google Scholar 

  14. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka: High-temperature thermoelectric properties of Nb-doped MNiSn (M=Ti, Zr) half-Heusler compound. J. Alloys Compd. 469, 50 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge the Japan Society for the Promotion of Science (JSPS) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Funahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combe, E., Funahashi, R., Azough, F. et al. Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2Ox bulk materials. Journal of Materials Research 29, 1376–1382 (2014). https://doi.org/10.1557/jmr.2014.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.135

Navigation