Skip to main content
Log in

Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)-reinforced aluminum composite powders were synthesized by cryogenic milling. The effects of different milling parameters and CNT contents on the structural characteristics and mechanical properties of the resulting composite powders were studied. Detailed information on powder morphology and the dispersion and structural integrity of the CNTs is crucial for many powder consolidation methods, particularly cold spray, which is increasingly utilized to fabricate metal-based nanocomposites. While all of the produced composite powders exhibited particle sizes suitable for spray applications, it was found that with increasing CNT content, the average particle size decreased and the size distribution became narrower. The dispersion of CNTs improved with milling time and helped to maintain a small Al grain size during cryogenic milling. Although extensive milling allowed for substantial grain size reduction, the process caused notable CNT degradation, leading to a deterioration of the mechanical properties of the resulting composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. C. Suryanarayana: Non-Equilibrium Processing of Materials (Elsevier, 1999).

  2. A.A.A. Baker, S. Dutton, D. Kelly, and D.W. Kelly: Composite Materials for Aircraft Structures (AIAA, New York, NY, 2004).

    Google Scholar 

  3. A. Ramasamy, A-M. Hill, A. Hepper, A. Bull, and J. Clasper: Blast mines: Physics, injury mechanisms and vehicle protection. J. R. Army Med. Corps 155(4), 258 (2009).

    CAS  Google Scholar 

  4. J.P. Salvetat, J.M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, and L. Zuppiroli: Mechanical properties of carbon nanotubes. Appl. Phys. A: Mater. Sci. Process. 69(3), 255 (1999).

    CAS  Google Scholar 

  5. H. Dai: Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35(12), 1035 (2002).

    CAS  Google Scholar 

  6. W.K. Hong, C. Lee, D. Nepal, K.E. Geckeler, K. Shin, and T. Lee: Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation. Nanotechnology 17(22), 5675 (2006).

    CAS  Google Scholar 

  7. M. Treacy, T. Ebbesen, and J. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    CAS  Google Scholar 

  8. E.W. Wong, P.E. Sheehan, and C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997).

    CAS  Google Scholar 

  9. S.R. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites-a review. Int. Mater. Rev. 55(1), 41 (2010).

    CAS  Google Scholar 

  10. P. Ajayan: Nanotubes from carbon. Chem. Rev. 99(39), 1787 (1999).

    CAS  Google Scholar 

  11. T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13(9), 2445 (1998).

    CAS  Google Scholar 

  12. A. Esawi and K. Morsi: Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites, Part A 38(2), 646 (2007).

    Google Scholar 

  13. L. Wang, H. Choi, J-M. Myoung, and W. Lee: Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon 47(15), 3427 (2009).

    CAS  Google Scholar 

  14. I. Sridhar and K.R. Narayanan: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44(7), 1750 (2009).

    CAS  Google Scholar 

  15. T. Yamamoto, Y. Miyauchi, J. Motoyanagi, T. Fukushima, T. Aida, M. Kato, and S. Maruyama: Improved bath sonication method for dispersion of individual single-walled carbon nanotubes using new triphenylene-based surfactant. Jpn. J. Appl. Phys 47(4), 2000 (2008).

    CAS  Google Scholar 

  16. J. Lee and K. Rhee: Silane treatment of carbon nanotubes and its effect on the tribological behavior of carbon nanotube/epoxy nanocomposites. J. Nanosci. Nanotechnol. 9(12), 6948 (2009).

    CAS  Google Scholar 

  17. Y. Chen, M. Conway, and J. Fitzgerald: Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl. Phys. A: Mater. Sci. Process. 76(4), 633 (2003).

    CAS  Google Scholar 

  18. T. Garosshen and G. McCarthy: Low temperature carbide precipitation in a nickel base superalloy. Metall. Trans. A 16(7), 1213 (1985).

    Google Scholar 

  19. A.J.E. Welch: The reaction of crystal lattice discontinuities to mineral dressing. In Developments in Mineral Dressing (IMM, London, UK, 1953); p. 387.

    Google Scholar 

  20. N. Pierard, A. Fonseca, J.F. Colomer, C. Bossuot, J.M. Benoit, G. Van Tendeloo, J.P. Pirard, and J. Nagy: Ball milling effect on the structure of single-wall carbon nanotubes. Carbon 42(8), 1691 (2004).

    CAS  Google Scholar 

  21. Á. Kukovecz, T. Kanyó, Z. Kónya, and I. Kiricsi: Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon 43(5), 994 (2005).

    CAS  Google Scholar 

  22. D. Poirier, R. Gauvin, and R.A. Drew: Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Composites, Part A 40(9), 1482 (2009).

    Google Scholar 

  23. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah: Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng., A 508(1), 167 (2009).

    Google Scholar 

  24. C.L. DeCastro and B.S. Mitchell: Nanoparticles from mechanical attrition. In Synthesis, Functionalization, and Surface Treatment of Nanoparticles (American Scientific Publishers, Stevenson Ranch, 2002); pp. 1–15.

    Google Scholar 

  25. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3), 570 (2009).

    CAS  Google Scholar 

  26. J. Stein, B. Lenczowski, N. Fréty, and E. Anglaret: Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes. Carbon 50, 2264 (2012).

    CAS  Google Scholar 

  27. S. Ko, B. Kim, Y. Kim, T. Kim, K. Kim, B. McKay, and J. Shin: Manufacture of CNTs-Al Powder Precursors for Casting of CNTs-Al Matrix Composites. Mater. Sci. Forum 765, 353 (2013).

  28. E. Lamotte, K. Phillips, A. Perry, and H. Killias: Continuously cast aluminium-carbon fibre composites and their tensile properties. J. Mater. Sci. 7(3), 346 (1972).

    Google Scholar 

  29. A. Baker, D. Braddick, and P. Jackson: Fatigue of boron-aluminium and carbon-aluminium fibre composites. J. Mater. Sci. 7(7), 747 (1972).

    CAS  Google Scholar 

  30. S. Dong, J. Tu, and X. Zhang: An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater. Sci. Eng., A 313(1), 83 (2001).

    Google Scholar 

  31. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed. (Cambridge Univ Press, Cambridge, UK, 2009), p. 345.

    Google Scholar 

  32. M. Hüller, G.G. Chernik, E.L. Fokina, and N.I. Budim: Mechanical alloying in planetary mills of high accelerations. Rev. Adv. Mater. Sci. 18, 366 (2008).

    Google Scholar 

  33. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee: Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process. Appl. Surf. Sci. 252(5), 1368 (2005).

    CAS  Google Scholar 

  34. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia: Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surf. Coat. Technol. 201(6), 3422 (2006).

    CAS  Google Scholar 

  35. G.E. Dieter: Mechanical Metallurgy (McGraw-Hill, New York, 1976).

    Google Scholar 

  36. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46(1), 1 (2001).

    CAS  Google Scholar 

  37. E. Lavernia, B. Han, and J. Schoenung: Cryomilled nanostructured materials: Processing and properties. Mater. Sci. Eng., A 493(1), 207 (2008).

    Google Scholar 

  38. B. Han, J. Ye, F. Tang, J. Schoenung, and E. Lavernia: Processing and behavior of nanostructured metallic alloys and composites by cryomilling. J. Mater. Sci. 42(5), 1660 (2007).

    CAS  Google Scholar 

  39. D. Witkin and E.J. Lavernia: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51(1), 1 (2006).

    CAS  Google Scholar 

  40. J. Lee, T. Jeong, J. Heo, S.H. Park, D.H. Lee, J.B. Park, H.S. Han, Y.N. Kwon, I. Kovalev, and S.M. Yoon: Short carbon nanotubes produced by cryogenic crushing. Carbon 44(14), 2984 (2006).

    CAS  Google Scholar 

  41. D. Woo, B. Sneed, F. Peerally, F. Heer, L. Brewer, J. Hooper, and S. Osswald: Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray. Carbon 63, 404 (2013).

    CAS  Google Scholar 

  42. T. Buchheit and T. Vogler: Measurement of ceramic powders using instrumented indentation and correlation with their dynamic response. Mech. Mater. 42(6), 599 (2010).

    Google Scholar 

  43. H.J. Fecht: Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6(1), 33 (1995).

    CAS  Google Scholar 

  44. H-T. Wang, C-J. Li, G-J. Yang, C-X. Li, Q. Zhang, and W-Y. Li: Microstructural characterization of cold-sprayed nanostructured FeAl intermetallic compound coating and its ball-milled feedstock powders. J. Therm. Spray Technol. 16(5), 669 (2007).

    CAS  Google Scholar 

  45. H. Kaftelen and M. Öveçoğlu: Microstructural characterization and wear properties of ultra-dispersed nanodiamond (UDD) reinforced Al matrix composites fabricated by ball-milling and sintering. J. Compos. Mater. 46(13), 1521 (2012).

    Google Scholar 

  46. K. Morsi and A. Esawi: Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. J. Mater. Sci. 42(13), 4954 (2007).

    CAS  Google Scholar 

  47. L. Kumari, T. Zhang, G. Du, W. Li, Q. Wang, A. Datye, and K. Wu: Thermal properties of CNT-alumina nanocomposites. Compos. Sci. Technol. 68(9), 2178 (2008).

    CAS  Google Scholar 

  48. S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, and T. Tsukada: Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scr. Mater. 63(4), 375 (2010).

    CAS  Google Scholar 

  49. Q. Zhang, G. Chen, S. Yoon, J. Ahn, S. Wang, Q. Zhou, Q. Wang, and J. Li: Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 66(16), 165440 (2002).

    Google Scholar 

  50. S. Osswald, V. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi: Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80(7), 075419 (2009).

    Google Scholar 

  51. A.C. Ferrari and J. Robertson: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc., A 362(1824), 2477 (2004).

    CAS  Google Scholar 

  52. S. Osswald, M. Havel, and Y. Gogotsi: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(6), 728 (2007).

    CAS  Google Scholar 

  53. P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl: A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon 44(14), 3005 (2006).

    CAS  Google Scholar 

  54. C. Wu, P. Wang, X. Yao, C. Liu, D. Chen, G. Lu, and H. Cheng: Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J. Alloys Compd. 420(1), 278 (2006).

    CAS  Google Scholar 

  55. J.H. Lee, K.Y. Rhee, and S.J. Park: Effects of cryomilling on the structures and hydrogen storage characteristics of multi-walled carbon nanotubes. Int. J. Hydrogen Energy 35(15), 7850 (2010).

    CAS  Google Scholar 

  56. M. Kozlov, M. Hirabayashi, K. Nozaki, M. Tokumoto, and H. Ihara: Transformation of C60 fullerenes into a superhard form of carbon at moderate pressure. Appl. Phys. Lett. 66(10), 1199 (1995).

    CAS  Google Scholar 

  57. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53(10), 1159 (2005).

    CAS  Google Scholar 

  58. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Rühle: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54(20), 5367 (2006).

    CAS  Google Scholar 

  59. T. Kuzumaki, O. Ujiie, H. Ichinose, and K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv. Eng. Mater. 2(7), 416 (2000).

    CAS  Google Scholar 

  60. H.H. He: Two-Dimensional X-Ray Diffraction (Wiley Publishing, Hoboken, NJ, 2011).

    Google Scholar 

  61. J. He and J.M. Schoenung: Nanocrystalline Ni coatings strengthened with ultrafine particles. Metall. Mater. Trans. A 34(3), 673 (2003).

    Google Scholar 

  62. X. Zhang, H. Wang, J. Narayan, and C. Koch: Evidence for the formation mechanism of nanoscale microstructures in cryomilled Zn powder. Acta Mater. 49(8), 1319 (2001).

    CAS  Google Scholar 

  63. P.G. Shewmon: Transformations in Metals (McGraw-Hill, New York, 1969).

    Google Scholar 

  64. F. Zhou, X. Liao, Y. Zhu, S. Dallek, and E. Lavernia: Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 51(10), 2777 (2003).

    CAS  Google Scholar 

  65. J. Weertman: Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166(1), 161 (1993).

    Google Scholar 

  66. T. Mukai, K. Ishikawa, and K. Higashi: Influence of strain rate on the mechanical properties in fine-grained aluminum alloys. Mater. Sci. Eng., A 204(1), 12 (1995).

    Google Scholar 

  67. J. Benjamin: New Materials by Mechanical Alloying Techniques (DGM Informationgesellschaft, Oberursel, Germany, 1989), p. 3.

    Google Scholar 

  68. A.M. Esawi and M.A. El Borady: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68(2), 486 (2008).

    CAS  Google Scholar 

  69. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites, Part A 40(5), 589 (2009).

    Google Scholar 

  70. S-M. Zhou, X-B. Zhang, Z-P. Ding, C-Y. Min, G-L. Xu, and W-M. Zhu: Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Composites, Part A 38(2), 301 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Sarath Menon (NPS) for his assistance with SEM analysis. This work was supported by the Office of Naval Research (Code 30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Osswald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, D.J., Hooper, J.P., Osswald, S. et al. Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. Journal of Materials Research 29, 2644–2656 (2014). https://doi.org/10.1557/jmr.2014.300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.300

Navigation