Skip to main content

Advertisement

Log in

Asynchronous stoichiometric response in lithium iron phosphate batteries

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Operando energy-dispersive x-ray diffraction (EDXRD) was carried out on a newly formed 8 Ah lithium iron phosphate (LiFePO4) battery with the goal of elucidating the origin of asynchronous phase transformation commonly seen with in situ x-ray diffraction studies. The high-energy photons at the NSLS X17B1 beamline allow for penetration into a fully assembled battery and therefore negate any need for a specially designed in situ cell which often uses modified current collectors to minimize x-ray attenuation. Spatially-and-temporally resolved phase-mapping was conducted with a semiquantitative reference intensity ratio (RIR) analysis to estimate the relative abundance of the delithiated phase. The data show an asynchronous response in the stoichiometry versus the electrochemical profile and suggest limited diffusion in the electrode toward the end of discharge. Our results confirm that the asynchronous electrode response is not just limited to specially designed cells but occurs in fully assembled cells alike. We attribute this behavior to be a consequence of performing a local measurement over a wide-area heterogeneous reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652–657 (2008).

    CAS  Google Scholar 

  2. B. Scrosati and J. Garche: Lithium batteries: Status, prospects and future. J. Power Sources 195, 2419–2430 (2009).

    Article  Google Scholar 

  3. J.R. Croy, A. Abouimrane, and Z. Zhang: Next-generation lithium-ion batteries: The promise of near-term advancements. MRS Bull. 39(5), 407 (2014).

    Article  CAS  Google Scholar 

  4. T.B. Reddy: Linden’s Handbook of Batteries, 4th ed. (McGraw-Hill, New York, 2011).

    Google Scholar 

  5. M. Ebner, F. Marone, M. Stampanoni, and V. Wood: Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342(6159), 716–720 (2013).

    Article  CAS  Google Scholar 

  6. J.N. Reimers and J.R. Dahn: Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139(8), 2091–2097 (1992).

    Article  CAS  Google Scholar 

  7. G.G. Amatucci, J.M. Tarascon, and L.C. Klein: CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143(3), 1114–1123 (1996).

    Article  CAS  Google Scholar 

  8. M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J-B. Leriche, S. Patoux, C. Masquelier, and J-M. Tarascon: In situ x-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochim. Acta 47(19), 3137–3149 (2002).

    Article  CAS  Google Scholar 

  9. M.A. Rodriguez, D. Ingersolla, S.C. Vogel, and D.J. Williams: Simultaneous in situ neutron diffraction studies of the anode and cathode in a lithium-ion cell. Electrochem. Solid-State Lett. 7(1), A8–A10 (2004).

    Article  CAS  Google Scholar 

  10. A.K. Padhi, K.S. Nanjundaswamy, and J.B.D. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  11. A. Yamada, S.C. Chung, and K. Hinokuma: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001).

    Article  CAS  Google Scholar 

  12. S-Y. Chung, J.T. Bloking, and Y-M. Chiang: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002).

    Article  CAS  Google Scholar 

  13. W-J. Zhang: Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196(6), 2962–2970 (2011).

    Article  CAS  Google Scholar 

  14. Corey T. Love, Anna Korovina, Christopher J. Patridge, Karen E. Swider-Lyons, Mark E. Twigg, and David E. Ramaker: Review of LiFePO4 phase transition mechanisms and new observations from x-ray absorption spectroscopy. J. Electrochem. Soc. 160(5), A3153–A3161 (2013).

    Article  CAS  Google Scholar 

  15. A.S. Andersson, B. Kalska, L. Haggstrom, and J.O. Thomas: Lithium extraction/insertion in LiFePO4: An x-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130, 41–52 (2000).

    Article  CAS  Google Scholar 

  16. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill: Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008).

    Article  CAS  Google Scholar 

  17. N. Meethong, Y-H. Kao, M. Tang, H-Y. Huang, W.C. Carter, and Y-M. Chiang: Electrochemically induced phase transformation in nanoscale olivines Li1−xMPO4 (M = Fe, Mn). Chem. Mater. 20, 6189–6198 (2008).

    Article  CAS  Google Scholar 

  18. H-H. Chang, C-C. Chang, H-C. Wu, M-H. Yang, H-S. Sheu, and N-L. Wu: Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode. Electrochem. Commun. 10(2), 335–339 (2008).

    Article  CAS  Google Scholar 

  19. H.C. Shin, K.Y. Chung, W.S. Min, D.J. Byun, H. Jang, and B.W. Cho: Asymmetry between charge and discharge during high rate cycling in LiFePO4–In situ x-ray diffraction study. Electrochem. Commun. 10(4), 536–540 (2008).

    Article  CAS  Google Scholar 

  20. K. Inoue, S. Fujieda, K. Shinoda, S. Suzuki, and Y. Waseda: Chemical state of iron of LiFePO4 during charge-discharge cycles studied by in-situ x-ray absorption spectroscopy. Mater. Trans. 51(12), 2220–2224 (2010).

    Article  CAS  Google Scholar 

  21. J.B. Leriche, S. Hamelet, J. Shu, M. Morcrette, C. Masquelier, G. Ouvrard, M. Zerrouki, P. Soudan, S. Belic, E. Elkaïm, and F. Baudelet: An electrochemical cell for operando study of lithium batteries using synchrotron radiation. J. Electrochem. Soc. 157(5), A606–A610 (2010).

    Article  CAS  Google Scholar 

  22. H.C. Shin, K.W. Nam, Y.W. Chang, B.W. Cho, W-S. Yoon, X-Q. Yang, and K.Y. Chung: Comparative studies on C-coated and uncoated LiFePO4 cycling at various rates and temperatures using synchrotron based in situ x-ray diffraction. Electrochim. Acta 56(3), 1182–1189 (2011).

    Article  CAS  Google Scholar 

  23. X-J. Wang, C. Jaye, K-W. Nam, B. Zhang, H-Y. Chen, J. Bai, H. Li, X. Huang, D.A. Fischer, and X-Q. Yang: Investigation of the structural changes in Li1−xFePO4 upon charging by synchrotron radiation techniques. J. Mater. Chem. 21, 11406–11411 (2011).

    Article  CAS  Google Scholar 

  24. J. Liu, M. Kunz, K. Chen, N. Tamura, and T.J. Richardson: Visualization of charge distribution in a lithium battery electrode. J. Phys. Chem. Lett. 1(14), 2120–2123 (2010).

    Article  CAS  Google Scholar 

  25. M. Farkhondeh, M. Safari, M. Pritzker, M. Fowler, Taeyoung Han, Jasmine Wang, and C. Delacourt: Full-range simulation of a commercial LiFePO4 electrode accounting for bulk and surface effects: A comparative analysis. J. Electrochem. Soc. 161(3), A201–A212 (2014).

    Article  CAS  Google Scholar 

  26. F. Ronci, B. Scrosati, V. Rossi Albertini, and P. Perfetti: A novel approach to in situ diffractometry of intercalation materials: The EDXD technique preliminary results on LiNi0.8Co0.2O2. Electrochem. Solid-State Lett. 3(4), 174–177 (2000).

    Article  CAS  Google Scholar 

  27. S. Panero, P. Reale, F. Ronci, B. Scrosati, P. Perfetti, and V. Rossi Albertini: Refined, in-situ EDXD structural analysis of the Li[Li1/3Ti5/3]O4 electrode under lithium insertion–extraction. Phys. Chem. Chem. Phys. 3, 845–847 (2001).

    Article  CAS  Google Scholar 

  28. J. Rijssenbeek, Y. Gao, Z. Zhong, M. Croft, N. Jisrawi, A. Ignatov, and T. Tsakalakos: In situ x-ray diffraction of prototype sodium metal halide cells: Time and space electrochemical profiling. J. Power Sources 196(4), 2332–2339 (2011).

    Article  CAS  Google Scholar 

  29. E. Takeuchi, A. Marschilok, K. Takeuchi, A. Ignatov, Z. Zhong, and M. Croft: Energy dispersive x-ray diffraction of lithium–silver vanadium phosphorous oxide cells: In situ cathode depth profiling of an electrochemical reduction–displacement reaction. Energy Environ. Sci. 6, 1465–1470 (2013).

    Article  CAS  Google Scholar 

  30. J.W. Gallaway, C.K. Erdonmez, Z. Zhong, M. Croft, L.A. Sviridov, T.Z. Sholklapper, D.E. Turney, S. Banerjee, and D.A. Steingart: Real-time materials evolution visualized within intact cycling alkaline batteries. J. Mater. Chem. A 2, 2757–2764 (2014).

    Article  CAS  Google Scholar 

  31. W. Thomlinson, D. Chapman, N. Gmür, and N. Lazarz: The superconducting wiggler beamport at the National Synchrotron Light Source. Nucl. Instrum. Methods A 266, 226–233 (1988).

    Article  Google Scholar 

  32. M. Wojdyr: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  33. F.H. Chung: Quantitative interpretation of x-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. J. Appl. Crystallogr. 8, 17 (1975).

    Article  Google Scholar 

  34. Calculated from FIZ#99861 (09/11/09) by Jade for FePO.

  35. Calculated from FIZ#162282 (09/11/09) by Jade for LiFePO.

Download references

ACKNOWLEDGEMENTS

Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Paxton.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paxton, W.A., Akdoğan, E.K., Şavkliyildiz, İ. et al. Asynchronous stoichiometric response in lithium iron phosphate batteries. Journal of Materials Research 30, 417–423 (2015). https://doi.org/10.1557/jmr.2014.321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.321

Navigation