Skip to main content
Log in

The influence of hot band annealing on recrystallization kinetics and texture evolution in a cold-rolled Nb-stabilized ferritic stainless steel during isothermal annealing

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hot-rolled Nb-stabilized ferritic stainless steel samples were produced with and without annealing. The samples were then cold rolled and isothermally annealed at 650–1000 °C for 10–14,400 s. The recrystallized volume fraction was quantified using the Johnson–Mehl–Avrami–Kolmogorov model and by measuring the microhardness of samples annealed for various duration. The texture evolution was analyzed using electron backscatter diffraction. The calculated Avrami exponents were between 0.8 and 1.2. The intensity of the {111}〈121〉 and {111}〈011〉 components of the γ-fiber increased and the deformation texture seen in the α-fiber decreased with increasing annealing time. The intensity of the rotated-cube component decreased with increasing annealing time. The intensity distributions of the early nucleation and full recrystallization textures were noticeably different. The {554}〈225〉 texture component, which was associated with the largest grains, appeared during the late stages of recrystallization. The final annealing led to a grain refinement with a final average grain diameter of 8 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. D.B. Lewis and F.B. Pickering: Development of recrystallization textures in ferritic stainless steels and their relationship to formability. Met. Technol. 10, 264–273 (1983).

    Article  CAS  Google Scholar 

  2. M-Y. Huh and O. Engler: Effect of intermediate annealing on texture, formability and ridging of 17%Cr ferritic stainless steel sheet. Mater. Sci. Eng., A 308, 74–87 (2001).

    Article  Google Scholar 

  3. Y. Yazawa, Y. Ozaki, Y. Kato, and O. Furukimi: Development of ferritic stainless steel sheets with excellent deep drawability by {111} recrystallization texture control. JSAE Rev. 24, 483–488 (2003).

    Article  CAS  Google Scholar 

  4. K.H. Lo, C.H. Shek, and J.K. Lai: Recent developments in stainless steels. Mater. Sci. Eng., R 65, 39–104 (2009).

    Article  Google Scholar 

  5. C.S. Viana, A.L. Pinto, F.S. Candido, and R.G. Matheu: Analysis of ridging in three ferritic stainless steel sheets. Mater. Sci. Technol. 22, 293–300 (2006).

    Article  Google Scholar 

  6. H. Yan, H. Bi, X. Li, and Z. Xu: Effect of two-step cold rolling and annealing on texture, grain boundary character distribution and r-value of Nb + Ti stabilized ferritic stainless steel. Mater. Charact. 60, 65–68 (2009).

    Article  CAS  Google Scholar 

  7. J. Hamada, N. Ono, and H. Inoue: Effect of texture on r-value of ferritic stainless steel sheets. ISIJ Int. 51, 1740–1748 (2011).

    Article  CAS  Google Scholar 

  8. M.G. Maruma, C.W. Siyasiva, and W.E. Stumpf: Effect of cold rolling and annealing temperature on texture evolution of 441 ferritic stainless steel. J. South Afr. Inst. Min. Metall. 113, 115–120 (2013).

    CAS  Google Scholar 

  9. F. Gao, Z.Y. Liu, H.T. Liu, S.M. Zang, A.M. Dong, Y.S. Hao, and G.D Wang: Development of γ-fibre recrystallization texture in medium-chromium ferritic stainless steels. Mater. Sci. Technol. 14, 1735–1741 (2014).

    Article  Google Scholar 

  10. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, J.D. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollet: Current issues in recrystallization: A review. Mater. Sci. Eng., A 238, 219–274 (1997).

    Article  Google Scholar 

  11. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Kidlington, Oxford, UK, 2004); p. 605.

    Google Scholar 

  12. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill: Physical Metallurgy Principles, 4th ed. (Cengage Learning, Stanford, US, 2009); p. 769.

    Google Scholar 

  13. F.J. Humphreys: Grain and subgrain characterization by electron backscatter diffraction. J. Mater. Sci. 36, 3833–3854 (2001).

    Article  CAS  Google Scholar 

  14. C.M. Sellars and P.L.O. Rossi: Quantitative metallography of recrystallization. Acta Metall. 45, 137–148 (1996).

    Google Scholar 

  15. R.A. Vandermeer and B.B. Rath: Kinetic theory of recrystallization: Recrystallization’90. International Conference on Recrystallization in Metallic Materials, 1990; pp. 49–58.

  16. R.A. Vandermeer and B.B. Rath: Modeling recrystallization kinetics in a deformed iron single crystal. Metall. Trans. A 20, 391–401 (1989).

    Article  Google Scholar 

  17. G. Mohapatra and S.S. Sahay: Recrystallization kinetics of TWIP steel: Interface velocity and stored energy. Mater. Sci. Technol. 27, 377–381 (2011).

    Article  Google Scholar 

  18. M. Hatherly: The origin of recrystallization textures: Recrystallization’90. In International Conference on Recrystallization in Metallic Materials, T. Chandra, ed. (TMS, Wollongong, 1990); pp. 59–68.

    Google Scholar 

  19. D. Raabe and K. Lücke: Selective particle drag during primary recrystallization of Fe–Cr alloys. Scr. Metall. Mater. 26, 19–24 (1992).

    Article  CAS  Google Scholar 

  20. D. Raabe and K. Lücke: Textures of ferritic stainless steel. Mater. Sci. Technol. 9, 302–312 (1993).

    Article  CAS  Google Scholar 

  21. D. Raabe: On the influence of the chromium content on the evolution of rolling textures in ferritic stainless steels. J. Mater. Sci. 36, 3839–3845 (1996).

    Article  Google Scholar 

  22. P. Gangli, J.J. Jonas, and T. Urabe: A combined model of oriented growth for the recrystallization nucleation and selective of interstitial-free steels. Metall. Mater. Trans. A 26, 2399–2406 (1995).

    Article  Google Scholar 

  23. L. Kestens and J.J. Jonas: Modeling texture change during the static recrystallization of intersticial free steel. Metall. Mater. Trans. A 27, 155–164 (1996).

    Article  Google Scholar 

  24. N. Yoshinaga, D. Vanderschueren, L. Kestens, K. Ushioda, and J. Dilewijns: Cold rolling and recrystallization in electro-deposited pure iron with a sharp texture formation in homogeneous γ-fiber. ISIJ Int. 38, 610–616 (1998).

    Article  CAS  Google Scholar 

  25. K. Verbeken, L. Kestens, and J.J. Jonas: Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel. Scr. Mater. 48, 1457–1462 (2003).

    Article  CAS  Google Scholar 

  26. W. Du, L-Z. Jiang, Q-S. Sun, Z-Y. Liu, and X. Zhang: Effect of hot band annealing processes on microstructure texture and r-value of ferritic stainless steel. J. Iron Steel Res. Int. 17, 58–62 (2010).

    Article  CAS  Google Scholar 

  27. C. Zhang, Z. Liu, and G. Wang: Effects of hot rolled shear bands on formability and surface ridging of an ultra-purified 21%Cr ferritic stainless steel. J. Mater. Proc. Technol. 211, 1051–1059 (2011).

    Article  CAS  Google Scholar 

  28. C.W. Sinclair, J-D. Mithieux, J-H. Schmitt, and Y. Bréchet: Recrystallization of stabilized ferritic stainless steel sheet. Metall. Mater. Trans. A 36, 3205–3215 (2005).

    Article  Google Scholar 

  29. ASTM E562-08: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count (ASTM, Pennsylvania, 2011); pp. 1–7.

    Google Scholar 

  30. A. Deschamps, F. Danoix, F. De Geuser, T. Epicier, H. Leitner, and M. Perez: Low temperature precipitation kinetics of niobium nitride platelets in Fe. Mater. Lett. 65, 2265–2268 (2011).

    Article  CAS  Google Scholar 

  31. M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps: Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall. Mater. Trans. A 32, 1635–1647 (2001).

    Article  Google Scholar 

  32. C. Capdevila, V. Amigó, F.G. Caballero, C. García de Andrés, and M.D. Salvador: Influence of microalloying elements on recrystallization texture of warm-rolled interstitial free steels. Mater. Trans. 51, 625–634 (2010).

    Article  CAS  Google Scholar 

  33. R.P. Siqueira, H.R.Z. Sandim, T.R. Oliveira, and D. Raabe: Composition and orientation effects on the final recrystallization texture of coarse-grained Nb-containing AISI 430 ferritic stainless steels. Mater. Sci. Eng., A 528, 3513–3519 (2011).

    Article  Google Scholar 

  34. M. Yantaç, W.T. Roberts, and D.V. Wilson: Texture development in ferritic stainless steel sheet. Texture 1, 71–86 (1972).

    Article  Google Scholar 

  35. Y.B. Park, D.N. Lee, and G. Gottstein: The evolution of recrystallization textures in body centered cubic metals. Acta Mater. 46, 3371–3379 (1998).

    Article  CAS  Google Scholar 

  36. L. Kestens and J.J. Jonas: Deep drawing textures in low carbon steels. Met. Mater. 5, 419–427 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank CAPES-PROEX, FAPEMIG and CNPq for research fellowships and masters made available to students and for their financial support. We also thank the company Aperam South America SA for providing the ferritic stainless steel samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Oliveira Malta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malta, P.O., Gonçalves, C.M., Alves, D.S. et al. The influence of hot band annealing on recrystallization kinetics and texture evolution in a cold-rolled Nb-stabilized ferritic stainless steel during isothermal annealing. Journal of Materials Research 31, 2838–2849 (2016). https://doi.org/10.1557/jmr.2016.296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.296

Navigation