Skip to main content

Advertisement

Log in

An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of energy storage device utilizing carbon nanomaterials possesses remarkably significant electrochemical performance. As compared to others, carbon nanomaterials including carbon black, graphene, activated carbon, and carbon nanotube have advantages in ion accessibility and specific surface area in which, more charged ions can access and transfer to the surfaces of material and thus have enhanced electrical charge storage performance. This manuscript briefly reviews the deposition of carbon nanomaterials from electrophoretic deposition technique which is good because of its simple, economical, versatility, and possibility of the thin film deposition on large substrate. The current state-of-the-art and performance of devices employing carbon as electrode material is also extensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, and A. Dugast: Electrode compositions for carbon power supercapacitors. J. Power Sources 80, 149–155 (1999).

    Article  CAS  Google Scholar 

  2. J.P. Zheng: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem. Solid-State Lett. 2, 359–361 (1999).

    Article  CAS  Google Scholar 

  3. X. Andrieu: Energy Storage Systems for Electronics: New Trends in Electrochemical Technology, Vol. 1 (CRC Press, Boca Raton, 2000); p. 521.

    CAS  Google Scholar 

  4. B.E. Conway: Transition from supercapacitor to battery behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991).

    Article  CAS  Google Scholar 

  5. M.A. Azam, N.S.A. Manaf, E. Talib, and M.S.A. Bistamam: Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics 19, 1455–1476 (2003).

    Article  CAS  Google Scholar 

  6. S. Sarangapani, B.V. Tilak, and C.P. Chen: Materials for electrochemical capacitors: Theoretical and experimental constraints. J. Electrochem. Soc. 143, 3791–3799 (1996).

    Article  CAS  Google Scholar 

  7. K. Jurewicz and E. Frackowiak: Modified carbon for electrochemical capacitor. Mol. Phys. Rep. 27, 36–43 (2000).

    Google Scholar 

  8. M.D. Ingram, A.J. Pappin, F. Delalande, D. Poupard, and G. Terzulli: Development of electrochemical capacitors incorporating processable polymer gel electrolytes. Electrochim. Acta 39, 1601 (1998).

    Article  Google Scholar 

  9. M.A. Azam, A. Fujiwara, and T. Shimoda: Significant capacitance performance of vertically aligned single-walled carbon nanotube supercapacitor by varying potassium hydroxide concentration. Int. J. Electrochem. Sci. 8, 3902–3911 (2013).

    Google Scholar 

  10. I. Tanahashi, A. Yoshida, and A. Nishino: Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte. Bull. Chem. Soc. Jpn. 63, 3611–3614 (1990).

    Article  CAS  Google Scholar 

  11. T. Osaka, X. Liu, M. Nojima, and T. Momma: An electrochemical double-layer capacitor using an activated carbon electrode with gel electrolyte binder. J. Electrochem. Soc. 146, 1724 (1999).

    Article  CAS  Google Scholar 

  12. J.H. Lee, S.B. Wee, M.S. Kwon, H.H. Kim, and J.M. Choi: Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries. J. Power Sources 196, 6449–6455 (2011).

    Article  CAS  Google Scholar 

  13. N.S.A. Manaf, M.S.A. Bistamam, and M.A. Azam: Development of high performance electrochemical capacitor: A systematic review of electrode fabrication technique based on different carbon materials. ECS J. Solid State Sci. Technol. 2, 3101–3119 (2013).

    Article  CAS  Google Scholar 

  14. T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada: Electrochemical modification of active carbon fiber electrode and its application to electrochemical double layer capacitor. J. Power Sources 60, 249–253 (1996).

    Article  CAS  Google Scholar 

  15. M. Ishikawa, A. Sakamoto, M. Morita, Y. Matsuda, and K. Ishida: Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources 60, 233–238 (1996).

    Article  CAS  Google Scholar 

  16. R. Saliger, U. Fischer, C. Herta, and J. Fricke: High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 225, 81–85 (1998).

    Article  CAS  Google Scholar 

  17. P. Kossyrev: Carbon black supercapacitors employing thin electrodes. J. Power Sources 201, 347–352 (2012).

    Article  CAS  Google Scholar 

  18. F. Markoulidis, C. Lei, E. Figgermeier, D. Duff, S. Khalil, and B. Martorana: High performance supercapacitor electrodes. Mater. Sci. Eng. 40, 012021 (2012).

    Google Scholar 

  19. F. Beck, M. Dolata, E. Grivei, and N. Probst: Electrochemical supercapacitors based on industrial carbon blacks in aqueous H2SO4. J. Appl. Electrochem. 31, 845–853 (2001).

    Article  CAS  Google Scholar 

  20. E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, and F. Beguin: Nanotubular materials as electrodes for supercapacitors. Fuel Process. Technol. 77–78, 213–219 (2002).

    Article  Google Scholar 

  21. L.L. Zhang, R. Zhou, and X.S. Zhao: Graphene based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010).

    Article  CAS  Google Scholar 

  22. H. Shi: Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633–1639 (1996).

    Article  CAS  Google Scholar 

  23. M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner: Laser scribing of high performance and flexible graphene-based electrochemical capacitor. Science 335, 1326–1330 (2012).

    Article  CAS  Google Scholar 

  24. K. Xia, Q. Gao, J. Jiang, and J. Hu: Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46, 1718–1726 (2008).

    Article  CAS  Google Scholar 

  25. J. Wei, N. Nagarajan, and I. Zhitomirsky: Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol. 186, 356–361 (2007).

    Article  CAS  Google Scholar 

  26. J. Wei and I. Zhitomirsky: Electrosynthesis of manganese oxide films. Surf. Eng. 24, 40–46 (2008).

    Article  CAS  Google Scholar 

  27. F-J. Liu: Electrodeposition of manganese dioxide in three dimensional poly (3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor. J. Power Sources 182, 383–388 (2008).

    Article  CAS  Google Scholar 

  28. J. Zhou, J. Cheiftz, R. Li, F. Wang, X. Zhou, T.K. Sham, X. Sun, and Z. Ding: Tailoring multi-wall carbon nanotubes for smaller nanostructures. Carbon 47, 829–838 (2009).

    Article  CAS  Google Scholar 

  29. V. Subramanian, H. Zhu, and B. Wei: Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827–832 (2006).

    Article  CAS  Google Scholar 

  30. S.I.A. Razak, A.L. Ahmad, S.H.S. Zein, and A.R. Boccaccini: MnO2 filled multiwalled carbon nanotube/polyaniline nanocomposites with enhanced interfacial interaction and electronic properties. Scr. Mater. 61, 592–595 (2009).

    Article  CAS  Google Scholar 

  31. M.F. Rose: Performance characteristics of large surface area chemical double layer capacitors. J. Power Sources 33, 572–592 (1988).

    Google Scholar 

  32. S. Biniak, A. Swiatkowski, M. Pakula, and L.R. Radovic: Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. Chem. Phys. Carbon 27, 125–225 (2001).

    CAS  Google Scholar 

  33. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985).

    Article  CAS  Google Scholar 

  34. G. Salitra, A. Soffer, L. Eliad, Y. Cohen, and D. Aurbach: Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000).

    Article  CAS  Google Scholar 

  35. C. Lin, J.A. Ritter, and B.N. Popov: Correlation of double-layer capacitance with the pore structure of sol–gel derived carbon xerogels. J. Electrochem. Soc. 146, 3639–3643 (1999).

    Article  CAS  Google Scholar 

  36. Z. Jin, X. Yan, Y. Yu, and G. Zhao: Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2, 11706–11715 (2014).

    Article  CAS  Google Scholar 

  37. Y. Zhang, R. Li, H. Liu, X. Sun, P. Mérel, and S. Désilets: Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water. Appl. Surf. Sci. 255, 5003–5008 (2009).

    Article  CAS  Google Scholar 

  38. G.Y. Yu, W.X. Chen, Y.F. Zheng, J. Zhao, X. Li, and Z.D. Xu: Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes. Mater. Lett. 60, 2453–2456 (2006).

    Article  CAS  Google Scholar 

  39. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, and Y. Yang: Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim. Acta 52, 4595–4598 (2007).

    Article  CAS  Google Scholar 

  40. J. Yan, J. Liu, Z. Fan, T. Wei, and L. Zhang: High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50, 2179–2188 (2012).

    Article  CAS  Google Scholar 

  41. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 8463–8468 (2010).

    Google Scholar 

  42. R. Taylor, H. Marsh, E.A. Heintz, and F. Rodriguez-Reinoso: Introduction to Carbon Technologies (Universidad de Alicante, Secretarido de Publicaciones, 1997); p. 167.

  43. J.B. Donnet, R.C. Bansal, and M.J. Wang: Carbon Black Science and Technology, 2nd ed. (Marcel Dekker, New York, 1993); p. 34.

    Google Scholar 

  44. K. Kinoshita: Carbon: Electrochemical and Physiochemical Properties (Wiley-Interscience, New York, 1988); p. 58.

    Google Scholar 

  45. P.L. Taberna, P. Simon, and J.F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, 292–300 (2003).

    Article  CAS  Google Scholar 

  46. M. Nasibi, G. Rashed, and M.A. Golozar: Micro-nano sized carbon black as an electrode material for electrochemical double layer capacitors. Presented at the ICMMAE, 2012.

  47. R.M. Gnanamuthu and C.W. Lee: Electrochemical properties of super P carbon black as an anode active material for lithium-ion batteries. Mater. Chem. Phys. 130, 831–834 (2011).

    Article  CAS  Google Scholar 

  48. M.A. Azam, M.A. Mohamed, E. Shikoh, and A. Fujiwara: Thermal degradation of single-walled carbon nanotubes during alcohol catalytic chemical vapor deposition process. Jpn. J. Appl. Phys. 49, 02BA04 (2010).

    Article  CAS  Google Scholar 

  49. C.G. Hu, W.L. Wang, S.X. Wang, W. Zhu, and Y. Li: Investigation on electrochemical properties of carbon nanotubes. Diamond Relat. Mater. 12, 1295–1299 (2003).

    Article  CAS  Google Scholar 

  50. B. McEnaney: Prace Naukowe Insttutu Chemii i Technologii Nafty i Wegla. Politechniki Wroclawskiej, Konferencje 57, 10, S.11, 2002.

  51. K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, and Y.H. Lee: High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149, A1058 (2002).

    Article  CAS  Google Scholar 

  52. Y.H. Lee, K.H. An, S.C. Lim, W.S. Kim, H.J. Jeong, C.H. Doh, and S.I. Moon: Application of carbon nanotubes to energy storage devices. New Diamond Front. Carbon Technol. 12, 209–228 (2002).

    CAS  Google Scholar 

  53. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, and Y.H. Lee: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11, 387–392 (2001).

    Article  CAS  Google Scholar 

  54. M. Zhu, C.J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, and A.M. Bittner: Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 46, 1829–1840 (2008).

    Article  CAS  Google Scholar 

  55. J.S. Sakamoto and B. Dunn: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J. Electrochem. Soc. 149, 26–30 (2002).

    Article  CAS  Google Scholar 

  56. M. Guittet, A.I. Aria, and M. Gharib: Use of vertically-aligned carbon nanotube array to enhance the performance of electrochemical capacitors. Presented at the 11th IEEE International Conference on Nanotechnology (IEEE, Portland, 2011); pp. 80–85.

    Google Scholar 

  57. M.A. Azam, K. Isomura, A. Fujiwara, and T. Shimoda: Direct growth of vertically aligned single-walled carbon nanotubes on conducting substrate and its electrochemical performance in ionic liquids. Phys. Status Solidi A 209, 2260–2266 (2012).

    Article  CAS  Google Scholar 

  58. C. Du and N. Pan: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006).

    Article  CAS  Google Scholar 

  59. C. Du, J. Yeh, and N. Pan: High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350–353 (2005).

    Article  CAS  Google Scholar 

  60. M.A. Azam, E. Talib, N. Mohamad, M.S. Kasim, and M.W.A. Rashid: Mechanical and thermal properties of single-walled carbon nanotube filled epoxidized natural rubber nanocomposite. J. Appl. Sci. 14, 2183–2188 (2014).

    Article  CAS  Google Scholar 

  61. M.A. Mohamed, M.A. Azam, E. Shikoh, and A. Fujiwara: Fabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with different coercivities. Jpn. J. Appl. Phys. 49 (2S), 02BD08 (2010).

    Google Scholar 

  62. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, and F. Beguin: Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 361, 35–41 (2002).

    Article  CAS  Google Scholar 

  63. E. Frackowiak and F. Beguin: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001).

    Article  CAS  Google Scholar 

  64. E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin: Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2423 (2000).

    Article  CAS  Google Scholar 

  65. L.B. Hu, H. Wu, and Y. Cui: Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502 (2010).

    Article  CAS  Google Scholar 

  66. L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui: Highly conductive paper for energy storage devices. Proc. Natl. Acad. Sci. U. S. A. 106, 21490–21494 (2009).

    Article  CAS  Google Scholar 

  67. A.M. Affoune, B.L.V. Prasad, H. Sato, and T. Enoki: Electrophoretic deposition of nanosized diamond particles. Langmuir 17, 547–551 (2001).

    Article  CAS  Google Scholar 

  68. G. Cao: Growth of oxide nanorod arrays through sol electrophoretic deposition. J. Phys. Chem. B 108, 19921–19931 (2004).

    Article  CAS  Google Scholar 

  69. M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, S.J. Serna, C. Molpeceres, and J. Requena: Electrophoretic deposition to control artifial opal growth. Langmuir 15, 4701–4704 (1999).

    Article  CAS  Google Scholar 

  70. K. Shi and I. Zhitomirsky: Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J. Colloid Interface Sci. 407, 474–4781 (2013).

    Article  CAS  Google Scholar 

  71. I. Zhitomirsky: Cathodic deposition of ceramic and organoceramic materials: Fundamental aspects. Adv. Colloid Interface Sci. 97, 279–317 (2002).

    Article  CAS  Google Scholar 

  72. A.R. Boccaccini and I. Zhitomirsky: Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr. Opin. Solid State Mater. Sci. 6, 251–260 (2002).

    Article  CAS  Google Scholar 

  73. L. Besra and M. Liu: A review on fundamental and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007).

    Article  CAS  Google Scholar 

  74. P. Sarkar and P.S. Nicholson: Electrophoretic deposition (EPD): Mechanism, kinetics, and application to ceramic. J. Am. Ceram. Soc. 79, 1897–2002 (1996).

    Article  Google Scholar 

  75. H.C. Hamaker: The london—van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937).

    Article  CAS  Google Scholar 

  76. I. Zhitomirsky and A. Petric: Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20, 2055–2061 (2000).

    Article  CAS  Google Scholar 

  77. O.O. Van der Biest and L.J. Vandeperre: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999).

    Article  Google Scholar 

  78. Y. Fukada, N. Nagarajan, W. Mekky, Y. Bao, H.S. Kim, and P.S. Nicholson: Electrophoretic deposition-mechanism, myths and materials. J. Mater. Sci. 39, 787–801 (2004).

    Article  CAS  Google Scholar 

  79. F. Bouyer and A. Foissy: Electrophoretic deposition of silicon carbide. J. Am. Ceram. Soc. 82, 2001–2010 (1999).

    Article  CAS  Google Scholar 

  80. F. Grillon, D. Fayeulle, and M. Jeandin: Quantitative image analysis applied to electrophoretic coatings. J. Mater. Sci. Lett. 11, 272–275 (1992).

    Article  CAS  Google Scholar 

  81. B.E. Conway: Electrochemical Supercapacitors: Scientific fundamentals and technological applications (Kluwer Academic/Plenum Publishers, New York, 1999); p. 11.

    Book  Google Scholar 

  82. F. Lufrano and P. Staiti: Mesoporous carbon materials as electrodes for electrochemical supercapacitors. Int. J. Electrochem. Sci. 5, 903–916 (2010).

    CAS  Google Scholar 

  83. B.E. Conway, V. Birss, and J. Wojtowicz: The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1–14 (1997).

    Article  CAS  Google Scholar 

  84. D. Qu and H. Shi: Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).

    Article  CAS  Google Scholar 

  85. Y.T. Shih, K.Y. Lee, and Y.S. Huang: Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto grapheme. Appl. Surf. Sci. 294, 29–35 (2014).

    Article  CAS  Google Scholar 

  86. H. Fang, S. Zhang, X. Wu, W. Liu, B. Wen, Z. Du, and T. Jiang: Facile fabrication of multiwalled carbon nanotube/α-MnOOH coaxial nanocable films by electrophoretic deposition for supercapacitors. J. Power Sources 235, 95–104 (2013).

    Article  CAS  Google Scholar 

  87. D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, and C.D. Lokhande: Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 22, 3044–3052 (2012).

    Article  CAS  Google Scholar 

  88. C.Y. Chen, T.C. Chien, Y.C. Chan, C.K. Lin, and S.C. Wang: Pseudocapacitive properties of carbon nanotube/manganese oxide electrode deposited by electrophoretic deposition. Diamond Relat. Mater. 18, 482–485 (2009).

    Article  CAS  Google Scholar 

  89. S. Ghasemi, R. Ojani, and S. Ausi: Bipotential deposition of nickel–cobalt hexacyanoferrate nanostructure on graphene coated stainless steel for supercapacitors. Int. J. Hydrogen Energy 39, 14918–14926 (2014).

    Article  CAS  Google Scholar 

  90. S. Porada, L. Borchardt, M. Oschartz, M. Bryjak, J.S. Achitson, K.J. Keesman, S. Kaskel, P.M. Biesheuvel, and V. Presser: Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6, 3700–3712 (2013).

    Article  CAS  Google Scholar 

  91. S.J. Bao, B.L. He, Y.Y. Liang, W.J. Zhou, and H.L. Li: Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor. Mater. Sci. Eng., A 397, 305–309 (2005).

    Article  CAS  Google Scholar 

  92. G. Feng and P.T. Cummings: Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2, 2859–2864 (2011).

    Article  CAS  Google Scholar 

  93. J.J. Moore, J.H. Kang, and J.Z. Wen: Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Mater. Chem. Phys. 134, 68–73 (2012).

    Article  CAS  Google Scholar 

  94. H. Gualous, R. Gallay, G. Alcicek, B.T. Ighil, and A. Oukaour: Supercapacitor ageing at constant temperature and constant voltage and thermal shock. Microelectron. Reliab. 50, 1783–1788 (2010).

    Article  CAS  Google Scholar 

  95. M. Hahn, R. Kotz, R. Gallay, and A. Siggel: Pressure evolution in propylene carbonate based electrochemical double layer capacitors. Electrochim. Acta 52, 1709–1712 (2006).

    Article  CAS  Google Scholar 

  96. M. Hahn, O. Barbieri, R. Gallay, and R. Kotz: A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44, 2523–2533 (2006).

    Article  CAS  Google Scholar 

  97. R. Kotz, P.W. Ruch, and D. Cericola: Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J. Power Sources 195, 923–928 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to acknowledge the Ministry of Education Malaysia for the financial support through MyPhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Asyadi Azam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talib, E., Azam, M.A. An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device. Journal of Materials Research 31, 1972–1982 (2016). https://doi.org/10.1557/jmr.2016.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.88

Navigation