Skip to main content
Log in

Room temperature wear study of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions

  • Article
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study aims to investigate the sliding wear behavior of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys (HEAs) under oil lubricating conditions at room temperature. Phase and microstructural characterizations of HEAs are performed by utilizing X-ray photoelectron spectroscopy (XRD) and scanning electron microscope (SEM). The compressive yield strength of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) HEAs is observed to decrease from 1169.35 to 257.63 MPa. Plastic deformation up to 75% is achieved in the case of Al0.4FeCrNiCox =1 HEA. The microhardness of HEA samples is found to decrease from 377 to 199 HV after the addition of cobalt content from x = 0 to 1.0 mol. Thermal analysis is performed using a differential scanning calorimeter. It is confirmed that Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) HEAs do not undergo any phase change up to 1000 °C. The specific wear rate of Al0.4FeCrNiCox =1 HEA is observed to be highest in all wear conditions. The worn surfaces were analyzed by SEM with attached energy-dispersive spectroscopy, 3D profiling, and X-ray photoelectron spectroscopy (XPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS  Google Scholar 

  2. B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys (Elsevier, London, 2014).

    Google Scholar 

  3. C.C. Koch: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435–3444 (2017).

    Article  CAS  Google Scholar 

  4. O. Maulik, D. Kumar, S. Kumar, S.K. Dewangan, and V. Kumar: Structure and properties of light weight high entropy alloys: A brief review. Mater. Res. Express 5 (2018). https://doi.org/10.1088/2053-1591/aabbca.

  5. A. Munitz, S. Salhov, S. Hayun, and N. Frage: Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 683, 221–230 (2016).

    Article  CAS  Google Scholar 

  6. Y. Zou: Nanomechanical studies of high-entropy alloys. J. Mater. Res., 33, 3035–3054 (2018).

    Article  CAS  Google Scholar 

  7. T.T. Shun and Y.C. Du: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 479, 157–160 (2009).

    Article  CAS  Google Scholar 

  8. Y. Guo, L. Liu, Y. Zhang, J. Qi, B. Wang, Z. Zhao, J. Shang, and J. Xiang: A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. J. Mater. Res., 33, 3258–3265 (2018).

    Article  CAS  Google Scholar 

  9. E. Ghassemali, R. Sonkusare, K. Biswas, and N.P. Gurao: In situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539–546 (2017).

    Article  CAS  Google Scholar 

  10. M. Zhang and L. Zhang: Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbx high-entropy alloys. J. Mater. Res., 33, 3276–3286 (2018).

    Article  CAS  Google Scholar 

  11. R. Wang, K. Zhang, C. Davies, and X. Wu: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971–981 (2017).

    Article  CAS  Google Scholar 

  12. C.M. Lin and H.L. Tsai: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19, 288–294 (2011).

    Article  CAS  Google Scholar 

  13. D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar: Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt% NaCl solution. J. Mater. Eng. Perform. 27, 4481–4488 (2018).

    Article  CAS  Google Scholar 

  14. T.M. Butler and M.L. Weaver: Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229–244 (2016).

    Article  CAS  Google Scholar 

  15. Y.X. Liu, C.Q. Cheng, J.L. Shang, R. Wang, P. Li, and J. Zhao: Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x = 0.15, 0.4) in supercritical water and comparison with HR3C steel. Trans. Nonferrous Met. Soc. China 25, 1341–1351 (2015).

    Article  CAS  Google Scholar 

  16. X. Chen, Y. Sui, J. Qi, Y. He, F. Wei, Q. Meng, and Z. Sun: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 32, 2109–2116 (2017).

    Article  CAS  Google Scholar 

  17. Y. Wang, Y. Yang, H. Yang, M. Zhang, and J. Qiao: Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 725, 365–372 (2017).

    Article  CAS  Google Scholar 

  18. Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, and J. Qiao: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys., 210, 233–239 (2018).

    Article  CAS  Google Scholar 

  19. S. Yadav, A. Kumar, and K. Biswas: Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Mater. Chem. Phys. 210, 222–232 (2018).

    Article  CAS  Google Scholar 

  20. S. Kumar, D. Kumar, O. Maulik, A.K. Pradhan, V. Kumar, and A. Patnaik: Synthesis and air jet erosion study of AlxFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall. Mater. Trans. A, 49, 5607–5618 (2018).

    Article  CAS  Google Scholar 

  21. D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71–77 (2017).

    Article  CAS  Google Scholar 

  22. O. Maulik and V. Kumar: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116–125 (2015).

    Article  CAS  Google Scholar 

  23. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46–56 (2016).

    Article  CAS  Google Scholar 

  24. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57–62 (2014).

    Article  CAS  Google Scholar 

  25. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperature. Mater. Sci. Forum 688, 419–425 (2011).

    Article  CAS  Google Scholar 

  26. Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M.Z. Moroz, and J.W. Qiao: Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 High-entropy alloy. Mater. Sci. Eng., A 645, 163–169 (2015).

    Article  CAS  Google Scholar 

  27. W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu: Alloying behavior microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854–860 (2013).

    Article  CAS  Google Scholar 

  28. S. Fang, W. Chen, and Z. Fu: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973–979 (2014).

    Article  CAS  Google Scholar 

  29. G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200–205 (2018).

    Article  CAS  Google Scholar 

  30. Y. Zhao, H. Cui, M. Wang, Y. Zhao, X. Zhang, and C. Wang: The microstructures and properties changes induced by Al:Co ratios of the AlxCrCo2−xFeNi high entropy alloys. Mater. Sci. Eng., A 733, 153–163 (2018).

    Article  CAS  Google Scholar 

  31. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465–1469 (2004).

    Article  Google Scholar 

  32. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263–1271 (2005).

    Article  Google Scholar 

  33. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and M.H. Chuang: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363–1369 (2006).

    Article  Google Scholar 

  34. H. Duan, Y. Wu, M. Hua, C. Yuan, D. Wang, J. Tua, H. Kou, and J. Li: Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear 297, 1045–1051 (2013).

    Article  CAS  Google Scholar 

  35. Y. Yu, W.M. Liu, T.B. Zhang, J.S. Li, J. Wang, H.C. Kou, and J. Li: Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall. Mater. Trans. A 45, 201–207 (2014).

    Article  CAS  Google Scholar 

  36. Y. Yu, J. Wang, J. Li, J. Yang, H. Kou, and W. Liu: Tribological behavior of AlCoCrFeNi(Ti0.5) high entropy alloys under oil and MACs lubrication. J. Mater. Sci. Technol. 32, 470–476 (2016).

    Article  CAS  Google Scholar 

  37. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009).

    Article  CAS  Google Scholar 

  38. A. Takeuchi and A. Inoue: Calculation of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 1372–1378 (2000).

    Article  CAS  Google Scholar 

  39. S. Guo and C.T. Liu: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433–446 (2011).

    Article  Google Scholar 

  40. Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li: Effects of electro-negativity on the stability of topologically closepacked phase in high entropy alloys. Intermetallics 52, 105–109 (2014).

    Article  CAS  Google Scholar 

  41. H. Baker: ASM Handbook: Alloy phase diagrams, Volume 3 (ASM International, Materials Park, 1992).

    Google Scholar 

  42. Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, and A. Chiba: Effects of microstructures on the sliding behavior of hot-pressed CoCrMo alloys. Wear 319, 200–210 (2014).

    Article  CAS  Google Scholar 

  43. V. Kukshal, A. Patnaik, and I.K. Bhat: Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high entropy alloys. Mater. Res. Express 5, (2018). https://doi.org/10.1088/1757-899X/377/1/012023.

  44. C. Li, J.C. Li, M. Zhao, and Q. Jiang: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloys Compd. 475, 752–757 (2009).

    Article  CAS  Google Scholar 

  45. J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 633, 184–193 (2015).

    Article  CAS  Google Scholar 

  46. P. Sperka, I. Krupka, and M. Hartl: The effect of surface grooves on film breakdowns in point contacts. Tribol. Int. 102, 249–256 (2016).

    Article  Google Scholar 

  47. D.S. Wang and J.F. Lin: Effect of surface roughness on elastohydrodynamic lubrication of line contacts. Tribol. Int. 24, 51–62 (1991).

    Article  CAS  Google Scholar 

  48. I.M. Hutchings: Tribology: Friction and Wear of Engineering Materials (Elsevier, London, 1995).

    Google Scholar 

  49. L. Conceicao and A.S.C.M. D’Oliveira: The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf. Coat. Technol. 288, 69–78 (2016).

    Article  CAS  Google Scholar 

  50. S. Mitrovic, D. Adamovic, F. Zivic, D. Dzunic, and M. Pantic: Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Appl. Surf. Sci. 290, 223–232 (2014).

    Article  CAS  Google Scholar 

  51. T. Murakami, H. Mano, Y. Hibi, and S. Sasaki: Friction and wear properties of Fe7Mo6-based alloy in ethyl alcohol. Tribol. Int. 43, 2183–2189 (2010).

    Article  CAS  Google Scholar 

  52. https://www.nist.gov/.

  53. B. Bhushan: Modern Tribology Handbook (CRC Press, London, U.K., 2001); p. 455–492.

    Google Scholar 

  54. J.K. Mannekote and S.V. Kailas: The effect of oxidation on the tribological performance of few vegetable oils. J. Mater. Res. Technol. 1, 91–95 (2012).

    Article  CAS  Google Scholar 

  55. E.M. Nascimento, L.M. Amaral, and A.S.C.M. D’Oliveira: Characterization and wear of oxides formed on CoCr MoSi alloy coatings. Surf. Coat. Technol. 332, 408–413 (2017).

    Article  CAS  Google Scholar 

  56. L. Ma, L. Wang, Z. Nie, F. Wang, Y. Xue, J. Zhou, T. Cao, Y. Wang, and Y. Ren: Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron based high-energy X-ray diffraction. Acta Mater. 128, 12–21 (2017).

    Article  CAS  Google Scholar 

  57. ASTM E3-11: Standard Guide for Preparation of Metallographic Specimens, American Society for Testing and Materials (ASM Society, USA, 2011).

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the institute grants for financial support, Advanced Tribology Research Lab for tribology test, and Department of Mechanical Engineering MNIT Jaipur, Material Research Centre, MNIT Jaipur, for carrying out the experimental work. VK also thanks BRNS Project No. 34/20/01/2014-BRNS-0339, Mumbai (India), for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amar Patnaik or Vinod Kumar.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Patnaik, A., Pradhan, A.K. et al. Room temperature wear study of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions. Journal of Materials Research 34, 841–853 (2019). https://doi.org/10.1557/jmr.2018.499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.499

Navigation