Skip to main content

Advertisement

Log in

Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel and highly efficient Ag3VO4/C3N4/reduced TiO2 microsphere composite was obtained through a hydrothermal and depositional process. The microstructure, individual components with different proportions, and optical properties of the ternary nanocomposites were intensively studied. The prepared ternary composites exhibited superior photocatalytic performance of degradation of methylene blue compared with single component and S1 (C3N4/reduced TiO2) binary composites, demonstrating that the introduction of Ag3VO4 into g-C3N4/r-TiO2 can effectively improve the photocatalytic activity. Recycling experiments confirmed that the nanocomposites exhibited superior cycle performance. The enhanced capability could be attributed to a synergetic effect including the formation of heterojunction, large surface area, improved light absorption, matched energy band structure, and the improved separation efficiency of photogenerated charges coming from dual Z-scheme structure. Particularly, the introduction of Ag3VO4 makes the dual Z-scheme charge transfer pathway completed with improved separation efficiency and stronger redox ability of photogenerated electrons and holes. The work provides a promising method to develop a new dual Z-scheme photocatalytic system to remove environmental pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. K.Z. Qi, Y.B. Xie, R.D. Wang, S.Y. Liu, and Z. Zhao: Electroless plating Ni–P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation. Appl. Surf. Sci. 466, 847 (2019).

    Article  CAS  Google Scholar 

  2. M. Shahrezaei, S. Habibzadeh, A. Babaluo, H. Hosseinkhani, M. Haghighi, A. Hasanzadeh, and R. Tahmasebpour: Study of synthesis parameters and photocatalytic activity of TiO2 nanostructures. J. Exp. Nanosci. 12, 45 (2017).

    Article  CAS  Google Scholar 

  3. J. Leung, J. Warnan, D. Nam, J. Zhang, J. Willkomm, and E. Reisner: Photoelectrocatalytic H2 evolution in water with molecular catalysts immobilised on p-Si via a stabilising mesoporous TiO2 interlayer. Chem. Sci. 8, 5172 (2017).

    Article  CAS  Google Scholar 

  4. K.Z. Qi, S.Y. Liu, and M. Qiu: Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 39, 867 (2018).

    Article  CAS  Google Scholar 

  5. D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo, F. González, and I. González: Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. J. Mater. Sci. 52, 260 (2017).

    Article  CAS  Google Scholar 

  6. K.Z. Qi, S.Y. Liu, Y. Chen, B.S. Xia, and G.D. Li: A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 183, 193 (2018).

    Article  CAS  Google Scholar 

  7. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  8. B. Bhanvase, T. Shende, and S. Sonawane: A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 6, 1 (2017).

    Article  CAS  Google Scholar 

  9. K.Z. Qi, B. Cheng, J.G. Yu, and W.K. Ho: A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).

    Article  CAS  Google Scholar 

  10. B. Neppolian, A. Bruno, C. Bianchi, and M. Ashokkumar: Graphene oxide based Pt–TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrason. Sonochem. 19, 9 (2012).

    Article  CAS  Google Scholar 

  11. V. Subramanian, E. Wolf, and P. Kamat: Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).

    Article  CAS  Google Scholar 

  12. X. Yu, H. Wu, L. Yu, and X. Luo: Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 54, 4001 (2015).

    Article  CAS  Google Scholar 

  13. W. Zhang, C. Wang, X. Liu, and J. Li: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).

    Article  CAS  Google Scholar 

  14. A. Riaz, H. Qi, Y. Fang, J.F. Xu, C. Zhou, Z.G. Jin, Z.L. Hong, M.J. Zhi, and Y. Liu: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).

    Article  CAS  Google Scholar 

  15. J. Wang, H. Ruan, W. Li, D. Li, Y. Hu, J. Chen, Y. Shao, and Y. Zheng: Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation. J. Phys. Chem. C 116, 13935 (2012).

    Article  CAS  Google Scholar 

  16. E. Simsek: Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal., B 200, 309 (2017).

    Article  CAS  Google Scholar 

  17. K. Yoo: Synthesis of TiO2 materials using ionic liquids and its applications for sustainable energy and environment. J. Nanosci. Nanotechnol. 16, 4302 (2016).

    Article  CAS  Google Scholar 

  18. M. Powella, R. Quesada-Cabreraa, A. Taylorb, D. Teixeiraa, I. Papakonstantinoub, R. Palgravea, G. Sankara, and I. Parkin: Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning. Energy-saving window panels. Chem. Mater. 28, 1369 (2016).

    Article  CAS  Google Scholar 

  19. C. Zheng, D. Li, J. Wan, X. Yu, and Z. Xing: One-step synthesis of Ce–N–C–S-codoped TiO2 catalyst and its enhanced visible light photocatalytic activity. J. Nanosci. Nanotechnol. 16, 12573 (2016).

    Article  CAS  Google Scholar 

  20. Z. Zhan, X. Tan, T. Yu, L. Jia, and X. Huang: Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int. J. Hydrogen Energy 41, 11634 (2016).

    Article  CAS  Google Scholar 

  21. J. Chen, Z. Xia, H. Li, Q. Li, and Y. Zhang: Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition. Electrochim. Acta 166, 174 (2015).

    Article  CAS  Google Scholar 

  22. X.J. Bai, H.Y. Li, Z.Y. Zhang, X.R. Zhang, C. Wang, J. Xu, and Y.F. Zhu: Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation. Catal. Sci. Technol. 9, 1680 (2019).

    Article  CAS  Google Scholar 

  23. C. Di Valentin, G. Pacchioni, and A. Selloni: Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009).

    Article  CAS  Google Scholar 

  24. Z. Zhao, H. Tan, H. Zhao, Y. Lv, L. Zhou, Y. Song, and Z. Sun: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).

    Article  CAS  Google Scholar 

  25. M. Lu, C. Shao, K. Wang, N. Lu, X. Zhang, P. Zhang, M. Zhang, X. Li, and Y. Liu: p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 6, 9004 (2014).

    Article  CAS  Google Scholar 

  26. M. Wang, L. Cai, Q. Jin, H. Zhang, S. Fang, X. Qu, Z. Zhang, and Q. Zhang: One-pot composite synthesis of three-dimensional graphene oxide/poly(vinyl alcohol)/TiO2 microspheres for organic dye removal. Sep. Purif. Technol. 172, 217 (2017).

    Article  CAS  Google Scholar 

  27. L. Liu, C. Luo, J. Xiong, Z. Yang, Y. Zhang, Y. Cai, and H. Gu: Reduced graphene oxide (rGO) decorated TiO2 microspheres for visible-light photocatalytic reduction of Cr(VI). J. Alloys Compd. 690, 771 (2017).

    Article  CAS  Google Scholar 

  28. S. Obregón and G. Colón: Erbium doped TiO2–Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation. Appl. Catal., B 140, 299 (2013).

    Article  CAS  Google Scholar 

  29. K.Z. Qi, B. Cheng, J.G. Yu, and W.K. Ho: Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792 (2017).

    Article  CAS  Google Scholar 

  30. K.Z. Qi, H.S. Qi, J.Q. Yang, G.C. Wang, R. Selvaraj, and W.J. Zheng: Experimental and theoretical DFT + D investigations regarding to various morphology of cuprous oxide nanoparticles: Growth mechanism of ionic liquid-assisted synthesis and photocatalytic activities. Chem. Eng. J. 324, 347 (2017).

    Article  CAS  Google Scholar 

  31. J.T. Liu and J.B. Zhang: Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J. Mater. Res. 31, 1448 (2016).

    Article  CAS  Google Scholar 

  32. J.Q. Wen, J. Xie, X.B. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    CAS  Google Scholar 

  33. K.L. He, J. Xie, X.Y. Luo, J.Q. Wen, S. Ma, X. Li, Y.P. Fang, and X.C. Zhang: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).

    Article  CAS  Google Scholar 

  34. S. Wang, B.C. Zhu, M.J. Liu, L.Y. Zhang, J.G. Yu, and M.H. Zhou: Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal., B 243, 19 (2019).

    Article  CAS  Google Scholar 

  35. J.X. Low, B.Z. Dai, T. Tong, C.J. Jiang, and J.G. Yu: In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 31, 1802981 (2019).

    Article  CAS  Google Scholar 

  36. G. Li, X. Nie, Q. Jiang, T. An, P. Wong, H. Zhang, H. Zhao, and H. Yamashita: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86, 17 (2015).

    Article  CAS  Google Scholar 

  37. J. Ma, X. Tan, T. Yu, and X. Li: Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity. Int. J. Hydrogen Energy 41, 3877 (2016).

    Article  CAS  Google Scholar 

  38. D. Li, X. Duan, Q. Qin, H. Fan, and W. Zheng: Facile synthesis of novel α-Ag3VO4 nanostructures with enhanced photocatalytic activity. CrystEngComm 15, 8933 (2013).

    Article  CAS  Google Scholar 

  39. Z. Chen, F. Bing, Q. Liu, Z. Zhang, and X. Fang: Novel Z-scheme visible-light-driven Ag3PO4/Ag/SiC photocatalysts with enhanced photocatalytic activity. J. Mater. Chem. A 3, 4652 (2015).

    Article  CAS  Google Scholar 

  40. R. Zhang, H. Cui, X. Yang, H. Tang, H. Liu, and Y. Li: Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. Micro Nano Lett. 7, 1285 (2012).

    Article  CAS  Google Scholar 

  41. B. Jiang, L. Jiang, X. Shi, W. Wang, G. Li, F. Zhu, and D. Zhang: Ag2O/TiO2 nanorods heterojunctions as a strong visible-light photocatalyst for phenol treatment. J. Sol-Gel Sci. Technol. 73, 314 (2015).

    Article  CAS  Google Scholar 

  42. S. Zhao, H. Xu, H. Li, and Y. Xu: Photocatalytic degradation of methylene blue over Co–Ag3VO4 under visible light irradiation. Adv. Mater. Res. 335, 1385 (2011).

    Google Scholar 

  43. K. Wangkawong, S. Suntalelat, D. Tantraviwat, and B. Inceesungvorn: Novel CoTiO3/Ag3VO4 composite: Synthesis, characterization and visible-light-driven photocatalytic activity. Mater. Lett. 133, 119 (2014).

    Article  CAS  Google Scholar 

  44. G. Sun, H. Xu, H. Li, H. Shu, C. Liu, and Q. Zhang: Fabrication and characterization of visible-light-induced photocatalyst Gd2O3/Ag3VO4. React. Kinet., Mech. Catal. 99, 471 (2010).

    CAS  Google Scholar 

  45. J. Wang, P. Wang, Y. Cao, J. Che, W. Li, Y. Shao, Y. Zheng, and D. Li: A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. Appl. Catal., B 136, 94 (2013).

    Article  CAS  Google Scholar 

  46. S. Li, S. Hu, W. Jiang, Y. Liu, J. Liu, and Z. Wang: Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 501, 156 (2017).

    Article  CAS  Google Scholar 

  47. S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, and H. He: Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal., B 144, 885 (2014).

    Article  CAS  Google Scholar 

  48. M. Li, H. Liu, T. Liu, and Y. Qin: Design of a novel dual Z-scheme photocatalytic system composited of Ag2O modified Ti3+ self doped TiO2 nanocrystals with individual exposed (001) and (101) facets. Mater. Charact. 124, 136 (2017).

    Article  CAS  Google Scholar 

  49. C. Zhou, N. Ye, X. Yan, J. Wang, J. Pan, D. Wang, Q. Wang, J. Zu, and X. Cheng: Construction of hybrid Z-scheme graphitic C3N4/reduced TiO2 microsphere with visible-light-driven photocatalytic activity. J. Materiomics 4, 238 (2018).

    Article  Google Scholar 

  50. D. Sha, J. Wang, N. Ye, Y. Dai, J. Ren, M. Chen, Y. Wu, Q. Wang, H. Tang, and X. Yan: A novel and efficient synthesis of reduced TiO2/C nanocomposites with mesopores for improved visible light photocatalytic performance. Mater. Technol. 32, 451 (2017).

    Article  CAS  Google Scholar 

  51. J. Lee and X. Cui: Facile preparation of Ti3+ self-doped TiO2 microspheres with lichi-like surface through selective etching. Mater. Lett. 175, 114 (2016).

    Article  CAS  Google Scholar 

  52. J. Ren, Y. Wu, H. Zou, Y. Dai, D. Sha, M. Chen, J. Wang, J. Pan, and X. Yan: Synthesis of a novel CeVO4/graphitic C3N4 composite with enhanced visible-light photocatalytic property. Mater. Lett. 183, 219 (2016).

    Article  CAS  Google Scholar 

  53. S. Murugesan, A. Wijayasinghe, and B. Bergman: Preparation and characterization of CuI-doped silver borovanadate superionic system. Solid State Ionics 178, 779 (2007).

    Article  CAS  Google Scholar 

  54. J. Yu, S. Wang, J. Low, and W. Xiao: Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883 (2013).

    Article  CAS  Google Scholar 

  55. J. Ren, Y. Wu, Y. Dai, D. Sha, J. Pan, M. Chen, J. Wang, Q. Wang, N. Ye, and X. Yan: Preparation and characterization of graphitic C3N4/Ag3VO4 with excellent photocatalytic performance under visible light irradiation. J. Mater. Sci.: Mater. Electron. 28, 641 (2017).

    CAS  Google Scholar 

  56. S. Wu, K. Li, and W. Zhang: On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 324, 324 (2015).

    Article  CAS  Google Scholar 

  57. Q.L. Xu, L.Y. Zhang, J.G. Yu, S. Wageh, A. Ghamdi, and M. Jaroniec: Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 21, 1042 (2018).

    Article  CAS  Google Scholar 

  58. S. Le, W. Li, B. Borjigin, G. Li, and X. Wang: Tetracycline removal under solar illumination over Ag3VO4/mpg-C3N4 heterojunction photocatalysts. Photochem. Photobiol. 95, 501 (2018).

    Article  CAS  Google Scholar 

  59. Z. Feng, L. Zeng, Y.J. Chen, Y.Y. Ma, C.R. Zhao, R.S. Jin, Y. Lu, Y. Wu, and Y.M. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  60. H. Tang, S. Chang, G. Tang, and W. Li: AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 391, 440 (2017).

    Article  CAS  Google Scholar 

  61. H. Tang, Y. Fu, S. Chang, S. Xie, and G. Tang: Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants. Chin. J. Catal. 38, 337 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Six Talents Peak Project in Jiangsu Province (2011-ZBZZ045) and Jiangsu Province Ordinary University Graduate Student Innovation Project (KYCX18_2231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yuan, X., Wang, J. et al. Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity. Journal of Materials Research 34, 2024–2036 (2019). https://doi.org/10.1557/jmr.2019.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.164

Navigation