Skip to main content
Log in

Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy

  • Article
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2020

This article has been updated

Abstract

In this investigation, we have reported the alloying behavior, phase evolution, and thermal stability of equiatomic AlCoCrFeNiTi high-entropy alloy (HEA). The 40 h milled powder shows good chemical homogeneity with agglomerated particles varying in the range of ∼3–18 μm. The formation of a nanostructured single-phase BCC (a = 2.85 ± 0.01 Å) was observed along with the minor tungsten carbide (WC) phase that formed due to contamination during milling. Thermal stability of the alloy has been studied using dynamic differential scanning calorimetry (DSC) thermogram and in situ X-ray diffraction. It has been found that this HEA is stable up to 600 °C (873 K). Consolidated samples at 1000 °C (1273 K) showed the transformation of body centered cubic (BCC) phase into the B2 (a = 2.87 ± 0.03 Å) phase co-existing with minor hexagonal WC (a = 2.90 Å, c = 2.83 Å) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Change history

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213–218 (2004).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  3. N.K. Mukhopadhyay: High entropy alloys: A renaissance in physical metallurgy. Curr. Sci. 109, 665–667 (2015).

    Article  Google Scholar 

  4. J.W. Yeh: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759–1771 (2013).

    Article  CAS  Google Scholar 

  5. S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, and H.S. Kim: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591–604 (2017).

    Article  CAS  Google Scholar 

  6. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299–313 (2017).

    Article  CAS  Google Scholar 

  7. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I. Dlouhy: Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater. Lett. 174, 53–56 (2016).

    Article  CAS  Google Scholar 

  8. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1–7 (2013).

    Google Scholar 

  9. Y.L. Chou, J.W. Yeh, and H.C. Shih: The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 52, 2571–2581 (2010).

    Article  CAS  Google Scholar 

  10. W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai: The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygen-containing atmospheres. Corros. Sci. 108, 209–214 (2016).

    Article  CAS  Google Scholar 

  11. Z. Fu, W. Chen, Z. Jiang, B.E. MacDonald, Y. Lin, F. Chen, L. Zhang, and E.J. Lavernia: Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy. Powder Metall. 61, 106–114 (2018).

    Article  CAS  Google Scholar 

  12. K. Zhang and Z. Fu: Intermetallics effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics 28, 34–39 (2012).

    Article  CAS  Google Scholar 

  13. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253–257 (2008).

    Article  CAS  Google Scholar 

  14. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154–158 (2008).

    Article  Google Scholar 

  15. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, and S.K. Chen: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768–775 (2009).

    Article  CAS  Google Scholar 

  16. Z. Fu, W. Chen, Z. Chen, H. Wen, and E.J. Lavernia: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng., A 619, 137–145 (2014).

    Article  CAS  Google Scholar 

  17. C. Suryanarayana, E. Ivanov, and V. Boldyrev: The science and technology of mechanical alloying. Mater. Sci. Eng., A 304, 151–158 (2001).

    Article  Google Scholar 

  18. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001).

    Article  CAS  Google Scholar 

  19. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59–71 (2016).

    Article  CAS  Google Scholar 

  20. Z. Fu, W. Chen, H. Wen, Z. Chen, and E.J. Lavernia: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175–182 (2015).

    Article  CAS  Google Scholar 

  21. C.C. Koch: Nanocrystalline high-entropy alloys. Mater. Res. Lett. 32, 3435–3444 (2017).

    CAS  Google Scholar 

  22. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33–38 (2010).

    Article  CAS  Google Scholar 

  23. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng., A 508, 214–219 (2009).

    Article  Google Scholar 

  24. P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, and F. Rosi: Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys. 162, 277–280 (2016).

    CAS  Google Scholar 

  25. E. Thostenson and T.W. Chu: Microwave processing: Fundamentals and applications. 30, 1055–1071 (1999).

    Google Scholar 

  26. W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu: Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854–860 (2013).

    Article  CAS  Google Scholar 

  27. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K. Mukhopadhyay: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 87–97 (2018).

    Article  CAS  Google Scholar 

  28. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N.K. Mukhopadhyay: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221–2230 (2018).

    Article  CAS  Google Scholar 

  29. C. Wang, W. Ji, and Z. Fu: Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 25, 1334–1338 (2014).

    Article  CAS  Google Scholar 

  30. Y.X. Zhuang, H.D. Xue, Z.Y. Chen, Z.Y. Hu, and J.C. He: Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Mater. Sci. Eng., A 572, 30–35 (2013).

    Article  CAS  Google Scholar 

  31. N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79–85 (2013).

    Article  CAS  Google Scholar 

  32. B.Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 6, 534–538 (2008).

    Article  Google Scholar 

  33. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238 (2012).

    Article  CAS  Google Scholar 

  34. A.R. Miedema, P.F. de Châtel, and F.R. de Boer: Cohesion in alloys—Fundamentals of a semi-empirical model. Physica B + C 100, 1–28 (1980).

    Article  CAS  Google Scholar 

  35. J. Basu, B.S. Murty, and S. Ranganathan: Glass forming ability: Miedema approach to (Zr, Ti, Hf)–(Cu, Ni) binary and ternary alloys. J. Alloys Compd. 465, 163–172 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Shivam.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivam, V., Shadangi, Y., Basu, J. et al. Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy. Journal of Materials Research 34, 787–795 (2019). https://doi.org/10.1557/jmr.2019.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.5

Navigation