Skip to main content
Log in

Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Due to the special crystal structures and electron configurations, high-entropy alloys (HEAs) are expected to have favorable activities for electrocatalytic reactions. In this paper, a set of oxygen evolution reaction (OER) criteria are applied for the HEA-based electrocatalyst design. Specifically, FeNiMnCrCu HEA is predicted to have a better OER performance than the baseline FeCoNiCrAI HEA. To demonstrate this design approach, both FeNiMnCrCu and FeCoNiCrAI samples are prepared and tested. Their crystal structures and electrocatalytic performance are examined. This paper demonstrates the potential of using finely tuned HEAs for OER applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Table I

Similar content being viewed by others

References

  1. D.L. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić: Hydrogen generation from water electrolysis—possibilities of energy saving. J. Power Sources 118, 315 (2003).

    Article  Google Scholar 

  2. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, and Y. Shao-Horn: Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399 (2012).

    Article  CAS  Google Scholar 

  3. M.S. Faber and S. Jin: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519 (2014).

    Article  CAS  Google Scholar 

  4. A. Liu, Z. Chen, X. Wei, W. Xiao, and J. Ding: Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined experimental and first-principles study. MRS Commun. 7, 563 (2017).

    Article  CAS  Google Scholar 

  5. L. Fei, Z. Min, Z. Yuxue, and Z. Xianghua: First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13, 1701931 (2017).

    Article  Google Scholar 

  6. B. Zhang, Y. Mu, M.C. Gao, W.J. Meng, and S.M. Guo: On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun. 7, 78 (2017).

    Article  Google Scholar 

  7. J. Wang, Y. Zhang, S.Z. Niu, W.Y. Wang, H.C. Kou, J.S. Li, S.Q. Wang, and E. Beaugnon: Formation of a hexagonal closed-packed phase in Al0.5CoCrFeNi high entropy alloy. MRS Commun. 7, 879 (2017).

    Article  CAS  Google Scholar 

  8. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  9. Z. Wang, W. Qiu, Y. Yang, and C.T. Liu: Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63 (2015).

    Article  CAS  Google Scholar 

  10. T. Bak, J. Nowotny, N.J. Sucher, and E. Wachsman: Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J. Phys. Chem. C 115, 15711 (2011).

    Article  CAS  Google Scholar 

  11. Z.Y. Lv, X.J. Liu, B. Jia, H. Wang, Y. Wu, and Z.P. Lu: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 6, 34213 (2016).

    Article  CAS  Google Scholar 

  12. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jónsson: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004).

    Article  Google Scholar 

  13. J.M. Thomas and J.W. Thomas (Eds). Principles and Practice of Heterogeneous Catalysis. 2nd ed. 2015. ISBN: 978-3-527-31458-4.

    Google Scholar 

  14. X. Cui, W. Xu, Z. Xie, J.A. Dorman, M.T. Gutierrez-Wing, and Y. Wang: Effect of dopant concentration on visible light driven photocatalytic activity of Sn1-xAgxS2. Dalton Trans. 45, 16290 (2016).

    Article  CAS  Google Scholar 

  15. I.D. Brown and R.D. Shannon: Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr. Sect. A 29, 266 (1973).

    Article  CAS  Google Scholar 

  16. J.A. Mejias, V. Staemmler, and H.J. Freund: Electronic states of the Cr 2 O 3 (0001) surface from ab initio embedded cluster calculations. J. Phys. Condens. Matter 11, 7881 (1999).

    Article  CAS  Google Scholar 

  17. L.S. Caputi, S.L. Jiang, A. Amoddeo, and R. Tucci: Oxygen-nickel bond length in Ni(111)-O determined by electron-energy-loss fine-structure spectroscopy. Phys. Rev. B 41, 8513 (1990).

    Article  CAS  Google Scholar 

  18. X. Cui, B. Zhang, C. Zeng, H. Wen, H. Yao, and S. Guo: Laser processed Ni-Fe alloys as electrocatalyst toward oxygen evolution reaction. Mater. Res. Express 5, 066527 (2018).

    Article  Google Scholar 

  19. H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x≤2) high-entropy alloys. Mater. Sci. Eng. B 163, 184 (2009).

    Article  CAS  Google Scholar 

  20. Y.F. Ye, C.T. Liu, and Y. Yang: A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Prog. Mater. Sci. 94, 152 (2015).

    CAS  Google Scholar 

  21. T. Egami: Atomic level stresses. Prog. Mater. Sci. 56, 637 (2011).

    Article  CAS  Google Scholar 

  22. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, and F. Zhang: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61 (2014).

    Article  CAS  Google Scholar 

  23. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A 508, 214 (2009).

    Article  Google Scholar 

  24. T. Zhou, Z. Cao, P. Zhang, H. Ma, Z. Gao, H. Wang, Y. Lu, J. He, and Y. Zhao: Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays. Sci. Rep. 7, 46154 (2017).

    Article  CAS  Google Scholar 

  25. E. Fabbri, A. Habereder, K. Waltar, R. Kotz, and T.J. Schmidt: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800 (2014).

    Article  CAS  Google Scholar 

  26. X. Cui, W. Xu, Z. Xie, and Y. Wang: High-performance dye-sensitized solar cells based on Ag-doped SnS2 counter electrodes. J. Mater. Chem. A 4, 1908 (2016).

    Article  CAS  Google Scholar 

  27. X. Cui, Z. Xie, and Y. Wang: Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 8, 11984 (2016).

    Article  CAS  Google Scholar 

  28. D.V. Franco, L.M. Da Silva, W.F. Jardim, and J.F.C. Boodts: Influence of the electrolyte composition on the kinetics of the oxygen evolution reaction and ozone production processes. J. Braz. Chem. Soc. 17, 746 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication is based upon the work supported by NSF-Consortium for innovation in manufacturing and materials (CIMM) program (grant number # OIA-1541079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Zhang, B., Zeng, C. et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Communications 8, 1230–1235 (2018). https://doi.org/10.1557/mrc.2018.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.111

Navigation