Skip to main content
Log in

Metalorganic Deposition of YBCO Films for Second-Generation High-Temperature Superconductor Wires

  • Material Matter
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metalorganic deposition (MOD) is an attractive process for low-cost, high-rate deposition of YBa2Cu3O7–(YBCO) films on continuous lengths of biaxially textured metallic templates for second-generation (2G) high-temperature superconductor (HTS) wires.MOD of YBCO films involves four steps:precursor synthesis, coating, decomposition, and reaction.The final films must meet stringent requirements, including high critical current, uniformity across the width and along the length of the textured substrate, and excellent mechanical properties.Achieving these properties has required the development of a metalorganic precursor that produces an intermediate BaF2-based film, which in turn is converted to a high-quality YBCO film.Understanding and controlling the deposition of the metalorganic precursor and its conversion to YBCO are critical to reproducibly manufacturing uniform, high-performance, HTS wires required for commercial applications.This article reviews the issues that must be addressed in the use of MOD for low-cost YBCO film fabrication and summarizes the performance of 2G HTS wires prepared by this manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sheth and K. Trembath Supercond. Sci. Technol. 16 (2003) p.322.

    Article  CAS  Google Scholar 

  2. K. Yamagiwa H. Hiei Y. Takahashi S.B. Kim K. Matsumoto H. Ikuta U. Mitzutani and I. Hirabayashi Physica C 334 (2000) p. 301.

    Article  CAS  Google Scholar 

  3. Y. Xu A. Goyal N.A. Rutter D. Shi M. Paranthaman S. Sathyamurthy P.M. Martin and D.M. Kroeger J. Am Ceram. Soc. (2004) in press.

    Google Scholar 

  4. C.E. Rice R.B. Dover van, and G.J. Fisanick Appl. Phys. Lett. 51 (1987) p.1842.

    Article  CAS  Google Scholar 

  5. M.E. Cross M. Hong S.H. Liou P.K. Gallagher and J. Kwo J. Appl. Phys. 52 (1998) p.160.

    Google Scholar 

  6. T. Manabe W. Kondo S. Misuta and T. Kumagai J.Appl. Phys. 30 (1991) p.L1641.

    Article  CAS  Google Scholar 

  7. M.W. Rupich Y.P. Liu J. Ibechem and J.P. Hachey J.Mater. Res. 8 (1993) p.1487.

    Article  CAS  Google Scholar 

  8. T. Kumagai H. Yamasaki K. Endo T. Manabe H. Niini T. Tsunoda W. Kondo and S. Mizuta Jpn. J. Appl. Phys., Part 2 32 (1993) p.L1602.

    Article  CAS  Google Scholar 

  9. T. Manabe W. Kondo S. Mizuta and T. Kumagai J.Mater. Res. 9 (1994) p.858.

    Article  CAS  Google Scholar 

  10. T. Kumagai T. Manabe W. Kondo and K. Arai Appl. Phys. Lett. 61 (1992) p.998.

    Article  Google Scholar 

  11. G. Kordas J. Non-Cryst. Solids 121 (1990) p.436.

    Article  CAS  Google Scholar 

  12. P.-Y. Chu I. Campion and R.C. Buchanan J.Mater. Res. 8 (1993) p.261.

    Article  CAS  Google Scholar 

  13. T.N. Bowmer and F.K. Shokoohi J. Mater. Res. 6 (1991) p.670.

    Article  CAS  Google Scholar 

  14. F. Parmigiani G. Chiarello N. Ripamonti H. Foretzki and U. Roll Phys. Rev. B 36 (1987) p.7148.

    Article  CAS  Google Scholar 

  15. T. Kumagai T. Manabe W. Kondo H. Minamiue and S. Mizuta Jpn. J. Appl. Phys., Part 2 29 (1990) p.L940.

    Article  CAS  Google Scholar 

  16. S. Hirano T. Hayashi and M. Miura J.Am. Ceram. Soc. 73 (1990) p.885.

    Article  CAS  Google Scholar 

  17. T. Nonaka K. Kanedo T. Hasegawa K. Kishio Y. Takahashi K. Kobayashi K. Kitazawa and K. Fueki Jpn. J.Appl. Phys., Part 2 27 (1998) p.L867.

    Article  Google Scholar 

  18. A. Gupta R. Jaganathan E.I. Cooper E.A. Giess J.I. Landman and B.W. Hussey Appl. Phys. Lett. 52 (1988) p.2077.

    Article  CAS  Google Scholar 

  19. A. Gupta E.I. Cooper R. Jaganathan and E.A. Giess in Chemistry of High Temperature Superconductors II (American Chemical Society, Washington, DC, 1988) p.265.

    Book  Google Scholar 

  20. P.C. McIntyre M.J. Cima and M.F. Ng J.Appl. Phys 68 (1990) p.4183.

    Article  CAS  Google Scholar 

  21. P.C. McIntyre M.J. Cima J.A. Smith R.B. Hallock M.P. Siegal and J.M. Phillips J. Appl. Phys. 71 (1992) p.1868.

    Article  CAS  Google Scholar 

  22. P.C. McIntyre M.J. Cima and A. Roshko J.Appl. Phys. 77 (1995) p.5263.

    Article  CAS  Google Scholar 

  23. P.C. McIntyre and M.J. Cima J.Mater. Res. 9 (1994) p.2219.

    Article  CAS  Google Scholar 

  24. J.A. Smith M.J. Cima and N. Sonnenburg IEEE Trans Appl. Supercond. 9 (1999) p.1531.

    Article  Google Scholar 

  25. M.W. Rupich D. Verebelyi C. Thieme U. Schoop X. Li T. Kodenkandath W. Zhang M. Teplitsky J. Scudiere A. Goyal and M. Paranthaman “ Development of 2G YBCO-RABiTS Wires,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.

    Google Scholar 

  26. T. Araki and I. Hirabayashi Supercond. Sci. Technol. 16 (2003) p.7.

    Article  Google Scholar 

  27. H. Fuji T. Honjo R. Teranishi Y. Tokunaga J. Shibata, T. Izumi Y. Shiohara Y. Iijima and T. Saitoh Physica C 392–396 (2003) p.905.

    Article  CAS  Google Scholar 

  28. R. Teranishi H. Fuji T. Honjo Y. Nakamura T. Izumi Y. Shiohara J. Shibata T. Yamamoto Y. Ikuhara and M. Yoshimura Physica C 378–381 (2002) p.1033.

    Article  Google Scholar 

  29. J.T. Dawley P.G. Clem M.P. Siegal D.R. Tallant and D.L. Overmyer J.Mater. Res. 17 (2002) p.1900.

    Article  CAS  Google Scholar 

  30. M.P. Siegal P.G. Clem J.T. Dawley R.J. Ong and M.A. Rodriquez Appl. Phys. Let. 15 (2002) p.2710.

    Article  CAS  Google Scholar 

  31. T. Araki K. Yamagiwa K. Suzuki I. Hirabayashi and S. Tanaka Supercond. Sci. Technol. 14 (2001) p.L21.

    Article  CAS  Google Scholar 

  32. M.W. Rupich Q. Li S. Annavarpu C. Thieme W. Zhang V. Punier M. Paranthaman A. Goyal D.F. Lee E.D. Specht and F.A. List IEEE Trans. Appl. Supercond. 11 (2001) p.2927.

    Article  Google Scholar 

  33. E.B. Gutoff and E.D. Cohen Coating and Drying Defects: Troubleshooting Operating Problems (John Wiley & Sons, New York, 1995) p.96.

    Google Scholar 

  34. S.F. Kistler and P.M. Schweizer Liquid Film Coating: Scientific Principles and Their Technological Implications (Chapman & Hall, New York, 1997) p.401.

    Book  Google Scholar 

  35. S.F. Kistler and P.M. Schweizer Liquid Film Coating: Scientific Principles and Their Technological Implications (Chapman & Hall, New York, 1997) p.675.

    Book  Google Scholar 

  36. F.A. List and P.G. Clem “ Laboratory Scale Dip-Coating and Vacuum Conversion of Solution-Deposited YBCO,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.

    Google Scholar 

  37. D.T. Verebelyi U. Schoop C. Thimie X. Li W. Zhang T. Kodenkandath A.P. Malozemoff N. Nguyen E. Siegal D. Buczek J. Lynch J. Scudiere, M. Rupich A. Goyal E.D. Specht P. Martin and M. Paranthaman Supercond. Sci. Technol. 16 (2003) p.19.

    Article  Google Scholar 

  38. P.C. McIntyre R.C. Chiu M.J. Cima and W.E. Rhine in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by D. Christen J. Narayan and L. Schneemeyer (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, 1990) p.743.

    Google Scholar 

  39. P. Clem M. Siegal and J. Voigt “ Solution Deposition of YBCO Coated Conductors,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.

    Google Scholar 

  40. J.T. Dawley P.G. Clem T.J. Boyle L.M. Ottley, D.L. Overmyer and M.P. Siegal Physica C 402 (2004) p.143.

    Article  CAS  Google Scholar 

  41. H. Fuji T. Honjo R. Teranishi Y. Tokunaga J. Matsuda S. Asada Y. Yamada T. Izumi Y. Shiohara Y. Iijima and T. Saitoh in Frontiers in Superconducting Materials—New Materials and Applications, edited by V. Matias J. Talvacchio X. Xi Z. Han, H.-W. Neumüller (Mater. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.117.

    Google Scholar 

  42. M.W. Rupich W. Zhang X. Li Kodenkan-T. dath, D.T. Verebelyi U. Schoop C. Thieme M. Teplitsky, J. Lynch N. Nguyen E. Siegal J. Scudiere V. Maroni K. Venkataraman D. Miller and T.G. Holesinger Physica C: Super-cond. (2004) in press.

    Google Scholar 

  43. V.F. Solovyov H.J. Wiesmann L. Wu and M. Suenaga Physica C 353 (2001) p.14.

    Article  CAS  Google Scholar 

  44. D.F. Lee K.J. Leonard L. Heatherly Jr, J. Yoo F.A. List N. Rutter S.W. Cook S. Sathyamurthy M. Paranthaman P.M. Martin A. Goyal and D.M. Kroeger Supercond. Sci. Technol. 17 (2004) p.386.

    Article  CAS  Google Scholar 

  45. V.F. Solovyov H.J. Wiesmann L. Wu and M. Suenaga Supercond. Sci. Technol. 16 (2003) p. L37.

    Article  CAS  Google Scholar 

  46. M. Yoshizumi I. Seleznev and M.J. Cima Physica C 403 (2004) p.191.

    Article  CAS  Google Scholar 

  47. Y. Zhang R. Feenstra J.R. Thompson A.A. Gapud T. Aytug and D. Christen in Frontiers in Superconducting Materials—New Materials and Applications, edited by V. Matias J. Talvacchio X. Xi Z. Han and H.-W. Neumüller (Mater. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.93.

  48. F.A. List E.D. Specht L. Heatherly K.J. Leonard S. Sathyamurthy and D.M. Kroeger Physica C 391 (2003) p.350.

    Article  CAS  Google Scholar 

  49. K. Gray D. Miller and V. Maroni “ Coordinated Characterization of Coated Conductors,” presented at the 2003 Annual Superconductivity Peer Review, Washington, DC, July 23–25, 2003.

    Google Scholar 

  50. M. Yoshizumi I. Seleznev and M.J. Cima Physica C 403 (2004) p.191.

    Article  CAS  Google Scholar 

  51. X. Li M.W. Rupich W. Zhang N. Nguyen T. Kodenkandath U. Schoop D.T. Verebelyi C. Thieme M. Jowett P.N. Arendt S.R. Foltyn T.G. Holesinger T. Aytug D.K. Christen and M.P. Paranthaman Physica C 390 (2003) p. 249.

    Article  CAS  Google Scholar 

  52. M.W. Rupich U. Schoop C.L.H. Thieme D.T. Verebelyi X. Li W. Zhang T. Kodenkandath N. Nguyen D. Buczek E. Siegal J. Lynch E. Thompson B. Aldrich and J. Scudiere, “High Performance of 2G HTS Wire Based on a RABiTSTM Template and MOD YBCO Film,” presented at the 106th American Ceramic Society Meeting, Indianapolis, IN, April 18–21, 2004.

    Google Scholar 

  53. J. Gouge J.W. Lue J.A. Demko R.C. Duckworth P.W. Fisher M. Daumling D.T. Lindsay M.L. Roden and J.C. Tolbert Adv. Cryog. Eng. 49 (2004) p.885

    Article  Google Scholar 

  54. J.L. MacManus-Driscoll, S.R. Foltyn Q.X. Jia H. Wang A. Serquis L. Civale B. Maiorov M.E. Hawley M.P. Maley and D.E. Peterson NatureMater. 3 (2004) p 439.

    Article  CAS  Google Scholar 

  55. T. Haugan P.N. Barnes I. Maartense E.J. Lee M. Sumption and C.B. Cobb J. Mater. Res. 18 (2003) p. 2618.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupich, M.W., Verebelyi, D.T., Zhang, W. et al. Metalorganic Deposition of YBCO Films for Second-Generation High-Temperature Superconductor Wires. MRS Bulletin 29, 572–578 (2004). https://doi.org/10.1557/mrs2004.163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.163

Keywords

Navigation