Skip to main content
Log in

Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

One-dimensional metallic nanostructures such as nanorods and nanowires are of tremendous interest for electronic, sensing, and catalytic applications. Shape anisotropy introduces new optical properties in gold and silver nanoparticles, such as longitudinal plasmon resonance bands in the visible and near-IR portion of the spectrum. Different approaches employed for the shape-controlled synthesis of silver and gold nanocrystals include chemical, electrochemical, and physical methods. The chemical route for the synthesis of nanorods and nanowires, in which metal salts are reduced in an aqueous solution, is one of the most widely used methods. This route commonly employs a surfactant as the directing agent to introduce asymmetry in the nanocrystal shape. Variation in the concentration of precursor salt and the surfactant, the nature of the surfactant, the nature and concentration of reducing agents, the presence of external salts, and the pH of the reaction solution all affect nanocrystal shape, dimension, and yield. The size and shape of the nanocrystals affect the position of the plasmon bands, which in turn has been widely used in surface-enhanced spectroscopies that include both Raman and fluorescence. The aqueous, surfactant-directed route also promises the synthesis of more complex nanostructures with additional desirable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Liz-Marzan, Mater. Today (February 2004) p. 26.

  2. M. Faraday, Philos. Trans. Royal Soc. London 147 (1857) p. 145.

    Google Scholar 

  3. The classic talk by Feynman can be accessed in full at http://www.zyvex.com/nanotech/feynman.html (accessed April 2005).

  4. See Sci. Am. 284 (September 2001), special issue on nanotechnology.

  5. K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, New York, 1992).

    Google Scholar 

  6. See Adv. Mater. 15 (2003), special issue on nanowires.

  7. See Acc. Chem. Res. 32 (1999), special issue on nanoscale materials.

  8. D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L-W. Wang, and A.P. Alivisatos, Nature 430 (2004) p. 190.

    Google Scholar 

  9. C.R. Martin, Chem. Mater. 8 (1996) p. 1739.

    Google Scholar 

  10. M. Li, H. Schnablegger, and S. Mann, Nature 402 (1999) p. 393.

    Google Scholar 

  11. X. F. Duan and C.M. Lieber, Adv. Mater. 12 (2000) p. 298.

    Google Scholar 

  12. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff, Nature 382 (1996) p. 607.

    Google Scholar 

  13. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991).

    Google Scholar 

  14. N.R. Jana, L. Gearheart, and C.J. Murphy, J. Phys. Chem. B 105 (2001) p. 4065.

    Google Scholar 

  15. N.R. Jana, L. Gearheart, and C.J. Murphy, Chem. Commun. 7 (2001) p. 617.

    Google Scholar 

  16. N.R. Jana, L. Gearheart, and C.J. Murphy, Adv. Mater. 13 (2001) p. 1389.

    Google Scholar 

  17. B. Nikoobakht and M.A. El-Sayed, Chem. Mater. 15 (2003) p. 1957.

    Google Scholar 

  18. J. Perez-Juste, L.M. Liz-Marzan, S. Carnie, D.Y.C. Chan, and P. Mulvaney, Adv. Funct. Mater. 14 (2004) p. 571.

    Google Scholar 

  19. Y. Ying, S.S. Chang, C.L. Lee, and C.R.C. Wang, J. Phys. Chem. B 101 (1997) p. 6661.

    Google Scholar 

  20. Z.L. Wang, M.B. Mohamed, S. Link, and M.A. El-Sayed, Surf. Sci. 440 (1999) p. L809.

    Google Scholar 

  21. K. Esumi, K. Matsuhisa, and K. Torigoe, Langmuir 11 (1995) p. 3285.

    Google Scholar 

  22. F. Kim, J.H. Song, and P. Yang, J. Am. Chem. Soc. 124 (2002) p. 14316.

    Google Scholar 

  23. C.J. Johnson, E. Dujardin, S.A. Davis, C.J. Murphy, and S. Mann, J. Mater. Chem. 12 (2002) p. 1765.

    Google Scholar 

  24. J. Wiesner and A. Wokaun, Chem. Phys. Lett. 157 (1989) p. 569.

    Google Scholar 

  25. K.R. Brown, D.G. Walter, and M.J. Natan, Chem. Mater. 12 (2000) p. 306.

    Google Scholar 

  26. B.D. Busbee, S.O. Obare, and C.J. Murphy, Adv. Mater. 15 (2003) p. 414.

    Google Scholar 

  27. T.K. Sau and C.J. Murphy, Langmuir 20 (2004) p. 6414.

    Google Scholar 

  28. I. Lisiecki and M.P. Pileni, J. Am. Chem. Soc. 115 (1993) p. 3887.

    Google Scholar 

  29. I. Lisiecki, A.H. Sack-Kongehl, K. Weiss, J. Urban, and M.P. Pileni, Langmuir 16 (2000) p. 8807.

    Google Scholar 

  30. G.D. Rees, R. Evans-Gowing, S.J. Hammond, and B.H. Robinson, Langmuir 15 (1999) p. 1993.

    Google Scholar 

  31. L. Qi, H. Cheng, and Z. Zhao, J. Phys. Chem. B 101 (1997) p. 3460.

    Google Scholar 

  32. P.L. Gai and M.A. Harmer, Nano Lett. 2 (2002) p. 771.

    Google Scholar 

  33. J. Gao, C.M. Bender, and C.J. Murphy, Langmuir 19 (2003) p. 9065.

    Google Scholar 

  34. B. Nikoobakht and M.A. El-Sayed, Langmuir 17 (2001) p. 6368.

    Google Scholar 

  35. A. Gole and C.J. Murphy, Chem. Mater. 16 (2004) p. 3633.

    Google Scholar 

  36. Y. Sun, B. Gates, B. Mayers, and B.Y. Xia, Nano Lett. 2 (2002) p. 165.

    Google Scholar 

  37. M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 108 (2004) p. 5882.

    Google Scholar 

  38. N. Taub, O. Krichevski, and G. Markovich, J. Phys. Chem. B 107 (2003) p. 11579.

    Google Scholar 

  39. Z. Wei, A.J. Mieszawska, and F.P. Zamborini, Langmuir 20 (2004) p. 4322.

    Google Scholar 

  40. J. A. Creighton and D.G. Eadon, J. Chem. Soc., Faraday Trans. 87 (1991) p. 3881.

    Google Scholar 

  41. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107 (2003) p. 668.

    Google Scholar 

  42. C.L. Haynes and R.P. Van Duyne, J. Phys. Chem. B 105 (2001) p. 5599.

    Google Scholar 

  43. M.A. El-Sayed, Acc. Chem. Res. 34 (2001) p. 257.

    Google Scholar 

  44. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, Chem. Rev. 99 (1999) p. 2957.

    Google Scholar 

  45. J.A. Creighton in Spectroscopy of Surfaces, edited by R.J.H. Clark and R.E. Hester (Wiley, Chichester, UK, 1988).

    Google Scholar 

  46. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem. B 107 (2003) p. 9964.

    Google Scholar 

  47. H.X. Xu, J. Aizpurua, M. Kall, and P. Apell, Phys. Rev. E 62 (2000) p. 4318.

    Google Scholar 

  48. D.H. Jeong, Y.X. Zhang, M. Moskovits, J. Phys. Chem. B 108 (2004) p. 12724.

    Google Scholar 

  49. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, Nano Lett. 3 (2003) p.1229.

    Google Scholar 

  50. J.I. Gersten, J. Chem. Phys. 72 (1980) p. 5779.

    Google Scholar 

  51. B. Nikoobakht and M.A. El-Sayed, J. Phys. Chem. A 107 (2003) p. 3372.

    Google Scholar 

  52. B. Nikoobakht, J. Wang, and M.A. El-Sayed, Chem. Phys. Lett. 366 (2002) p. 17.

    Google Scholar 

  53. A. Parfenov, I. Gryczynksi, J. Malicka, C.D. Geddes, and J.R. Lakowicz, J. Phys. Chem. B 107 (2003) p. 8829.

    Google Scholar 

  54. J.R. Lackowicz, C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, J. Fluoresc. 14 (2004) p. 425.

    Google Scholar 

  55. M.B. Mohamed, V. Volkov, S. Link, and M.A. El-Sayed, Chem. Phys. Lett. 317 (2000) p. 517.

    Google Scholar 

  56. A.M. Michaels, M. Nirmal, and L.E. Brus, J. Am. Chem. Soc. 121 (1999) p. 9932.

    Google Scholar 

  57. S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) p. 996.

    Google Scholar 

  58. J.C. Riboh, A.J. Haes, A.D. McFarland, C.R. Yonzon, and R.P. Van Duyne, J. Phys. Chem. B 107 (2003) p. 1772.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, C.J., Sau, T.K., Gole, A. et al. Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures. MRS Bulletin 30, 349–355 (2005). https://doi.org/10.1557/mrs2005.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.97

Keywords

Navigation