Skip to main content
Log in

Commercialization of bulk nanostructured metals and alloys

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Almost 30 years of research elucidating the mechanisms and reproducibility of nanostructuring has enabled the progressive emergence of reliable methods to manufacture bulk nanostructured metallic materials with superior properties. This article reviews examples of the use of nanostructured metals in engineered products that are currently commercially available, or will soon become available for specific biomedical, aerospace, electronics, and energy industry applications. The examples illustrate how the making and marketing of nanostructured materials follow similar development stages as other new advanced materials, but with additional challenges at each stage. Challenges include the difficulties of scaleup, intricacies of nanoscale characterization, the lack of consensus standards for product quality, competition with long-established conventional materials, regulatory hurdles associated with nanoscale technology, and consumer/user education on the virtues and limitations of nanostructuring. Finally, we discuss how the experiences to date with nanostructuring by various methods have established precedents that can guide manufacturing process development for advanced nanostructured metal and alloy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM 68, 1216 (2016)

    Article  CAS  Google Scholar 

  2. T.C. Lowe, R.Z. Valiev, in Advances in Biomaterials and Biodevices, A. Tiwari, A.N. Nordin, Eds. (Scrivener Publishing, Beverly, MA, 2014), pp. 1–52.

  3. T. Hanawa, in Metals for Biomedical Devices (Elsevier, Amsterdam, The Netherlands, 2019), pp. 3–29

  4. F.H. Sam Froes, M. Qian, Titanium in Medical and Dental Applications (Elsevier, Amsterdam, The Netherlands, 2018)

  5. R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials (Wiley, Hoboken, NJ, 2013), https://doi.org/10.1002/9781118742679

  6. G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP–Conform. Mater. Sci. Eng. A 382, 30 (2004)

    Article  Google Scholar 

  7. T.J. Webster, J.U. Ejiofor, Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25, 4731 (2004)

    Article  CAS  Google Scholar 

  8. R.Z. Valiev, M. Murashkin, I. Sabirov, A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr. Mater. 76, 13 (2014)

    Article  CAS  Google Scholar 

  9. S. Bagherifard, R. Ghelichi, A. Khademhosseini, M. Guagliano, Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl. Mater. Interfaces 6, 7963 (2014)

    Article  CAS  Google Scholar 

  10. R.A. Reiss, T.C. Lowe, J.A. Sena, O. Makhnin, M.C. Connick, P.E. Illescas, C.F. Davis, Bio-activating ultrafine grain titanium: RNA sequencing reveals enhanced mechano-activation of osteoconduction on nanostructured substrates. PLoS ONE 15, e0237463 (2020)

    Article  CAS  Google Scholar 

  11. I.P. Semenova, G.V. Klevtsov, N.A. Klevtsova, G.S. Dyakonov, A.A. Matchin, R.Z. Valiev, Nanostructured titanium for maxillofacial mini-implants. Adv. Eng. Mater. 18, 1216 (2016)

    Article  CAS  Google Scholar 

  12. D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, R.Z. Valiev, Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A Struct. Mater. 562, 128 (2013)

    Article  CAS  Google Scholar 

  13. A.V. Polyakov, L. Dluhoš, G.S. Dyakonov, G.I. Raab, R.Z. Valiev, Recent advances in processing and application of nanostructured titanium for dental implants. Adv. Eng. Mater. 17, 1869 (2015)

    Article  CAS  Google Scholar 

  14. Nanotechnology-enabled welding and manufacturing of high performance aluminum alloys—light metal age magazine. Light Met. Age (2020), pp. 22–23.

  15. M. Sokoluk, C. Cao, S. Pan, X. Li, Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat. Commun. 10, 1 (2019)

    Article  CAS  Google Scholar 

  16. G. Yao, C. Cao, S. Pan, T.C. Lin, M. Sokoluk, X. Li, High-performance copper reinforced with dispersed nanoparticles. J. Mater. Sci. 54, 4423 (2019)

    Article  CAS  Google Scholar 

  17. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528, 539 (2015)

    Article  CAS  Google Scholar 

  18. H. Kong, C. Liu, A review on nanoscale precipitation in steels. Technologies 6, 36 (2018)

    Article  Google Scholar 

  19. H.K.D.H. Bhadeshia, The first bulk nanostructured metal. Sci. Technol. Adv. Mater. 14, 14202 (2013)

    Article  CAS  Google Scholar 

  20. C.F. Davis, A.J. Griebel, T.C. Lowe, Isothermal continuous equal channel angular pressing of magnesium alloy AZ31. JOM 72, 2603 (2020)

    Article  CAS  Google Scholar 

  21. V.N. Anumalasetty, G. Colombo, G. McIntosh, Y. Mardakhayeva, D. Yu, in Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing (Springer, Cham, Switzerland, 2013), pp. 3265–3273, https://doi.org/10.1007/978-3-319-48764-9_403

  22. K. Mertová, J. Palán, M. Duchek, T. Studeckỳ, J. Džugan, I. Poláková, Continuous production of pure titanium with ultrafine to nanocrystalline microstructure. Materials (Basel) 13, 336 (2020), https://doi.org/10.3390/ma13020336

    Article  CAS  Google Scholar 

  23. A. Michalcová, D. Vojtěch, J. Vavřík, K. Bartha, P. Beran, J. Drahokoupil, J. Džugan, J. Palán, J. Čížek, P. Lejček, Structure and properties of high-strength Ti grade 4 prepared by severe plastic deformation and subsequent heat treatment. Materials (Basel) 13, 1116 (2020)

    Article  Google Scholar 

  24. J. Palán, R. Procházka, J. Džugan, J. Nacházel, M. Duchek, G. Németh, K. Máthis, P. Minárik, K. Horváth, Comprehensive evaluation of the properties of ultrafine to nanocrystalline grade 2 titanium wires. Materials (Basel) (2018), https://doi.org/10.3390/ma11122522

  25. C. Zhao, X. Zuo, E. Wang, R. Niu, K. Han, Simultaneously increasing strength and electrical conductivity in nanostructured Cu-Ag composite. Mater. Sci. Eng. A 652, 296 (2016)

    Article  CAS  Google Scholar 

  26. Y.X. Tong, Y. Wang, Z.M. Qian, D.T. Zhang, L. Li, Y.F. Zheng, Achieving high strength and high electrical conductivity in a CuCrZr alloy using equal-channel angular pressing. Acta Metall. Sin. Lett. 31, 1084 (2018)

    Article  CAS  Google Scholar 

  27. M.Y. Murashkin, I. Sabirov, X. Sauvage, R.Z. Valiev, Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J. Mater. Sci. 51, 33 (2016)

    Article  CAS  Google Scholar 

  28. C. Rochet, M. Veron, E.F. Rauch, T.C. Lowe, B. Arfaei, A. Laurino, J.P. Harouard, C. Blanc, Influence of equal-channel angular pressing on the microstructure and corrosion behaviour of a 6xxx aluminium alloy for automotive conductors. Corros. Sci. 166, 108453 (2020)

    Article  CAS  Google Scholar 

  29. R.C. Meagher, M.L. Hayne, J. DuClos, C.F. Davis, T.C. Lowe, T. Ungár, B. Arfaei, in Minerals, Metals and Materials Series, C. Chesonis, Ed. (Springer, Cham, Switzerland, 2019), pp. 1507–1513, https://doi.org/10.1007/978-3-030-05864-7_190

  30. T.C. Lowe, C.F. Davis, P.M. Rovira, M.L. Hayne, G.S. Campbell, J.E. Grzenia, P.J. Stock, R.C. Meagher, H.J. Rack, Scientific and technological foundations for scaling production of nanostructured metals. IOP Conf. Ser. Mater. Sci. Eng. 194, 012005 (2017)

    Article  Google Scholar 

  31. M. Morehead, Y. Huang, Y.T. Zhu, T. Lowe, R.Z. Valiev, Experimental investigation of the machinability of equal channel angular pressing processed commercially pure titanium. Trans. N. Am. Manuf. Res. Inst. Soc. Manuf. Eng. 34, 539 (2006)

    Google Scholar 

  32. M. Morehead, Y. Huang, K.T. Hartwig, Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. Int. J. Mach. Tools Manuf. 47, 286 (2007)

    Article  Google Scholar 

  33. J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, W. Volk, Effect of processing route on texture and cold formability of AZ31 Mg alloy sheets processed by ECAP. Mater. Sci. Eng. A 669, 159 (2016)

    Article  CAS  Google Scholar 

  34. M. Ciemiorek, M. Orłowska, M. Lewandowska, Ultrafine-grained plates and sheets: Processing, anisotropy and formability. Adv. Eng. Mater. 22(1), 1900666 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

R.Z.V. gratefully acknowledges the financial support from the Russian Science Foundation in the framework of the Project No. 20-63-47027 for research in his part of the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry C. Lowe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowe, T.C., Valiev, R.Z., Li, X. et al. Commercialization of bulk nanostructured metals and alloys. MRS Bulletin 46, 265–272 (2021). https://doi.org/10.1557/s43577-021-00060-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00060-0

Keywords

Navigation