Skip to main content
Log in

Simple embedded atom method model for fcc and hcp metals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A procedure based on the embedded atom method (EAM) is presented for developing atomistic models for use in computer simulation calculations, with an emphasis on simple but general schemes for matching experimental data with fitting parameters. Both the electron density function and the two-body potential are taken as exponentially decreasing functions and the model is derived for any choice of cutoff distance. The model has been applied successfully to seven fcc and three hcp metals, but the extension to bcc metals was unsuccessful because of difficulty in matching the shear anisotropy ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  2. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  3. M. J. Stott and E. Zaremba, Phys. Rev. B 22, 1564 (1980).

    Article  Google Scholar 

  4. J. K. Norskov and N. D. Lang, Phys. Rev. B 21, 2131 (1980).

    Article  Google Scholar 

  5. R. A. Johnson, in Computer Simulation In Materials Science, edited by R. J. Arsenault, J. R. Beeler, Jr., and D. M. Esterling (American Society for Metals, Metals Park, OH, 1987), p. 29.

    Google Scholar 

  6. M. S. Daw, M. I. Baskes, C. L. Bisson, and W. G. Wolfer, in Modelling Environmental Effects On Crack Initiation and Propagation (The Metallurgical Society of AIME, in press).

  7. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  Google Scholar 

  8. M. Manninen, Phys. Rev. B 34, 8486 (1986).

    Article  Google Scholar 

  9. K. W. Jacobson, J. K. Norskov, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).

    Article  Google Scholar 

  10. M. I. Baskes, J. Nucl. Mater. 128&129, 676 (1984).

    Article  Google Scholar 

  11. S. M. Foiles and M. S. Daw, J. Vac. Sci. Technol. A 3, 1565 (1985).

    Article  Google Scholar 

  12. S. M. Foiles, Phys. Rev. B 32, 3409 (1985).

    Article  Google Scholar 

  13. M. S. Daw and R. D. Hatcher, Solid State Commun. 56, 697 (1985).

    Article  CAS  Google Scholar 

  14. S. M. Foiles, Phys. Rev. B 32, 7685 (1985).

    Article  Google Scholar 

  15. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  Google Scholar 

  16. T. E. Felter, S. M. Foiles, M. S. Daw, and R. H. Stulen, Surf. Sci. 171, L379 (1986).

    Article  CAS  Google Scholar 

  17. M. S. Daw, Surf. Sci. 166, L161 (1986).

    Article  CAS  Google Scholar 

  18. G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, Philos. Mag. A 56, 735 (1987).

    Article  Google Scholar 

  19. R. A. Johnson, Phys. Rev. B 37, 3924 (1988).

    Article  Google Scholar 

  20. R. A. Johnson, Phys. Rev. B 6, 2094 (1972).

    Article  Google Scholar 

  21. E. Clementi and C. Roetti, Atomic Data Nucl. Data Tables 14, 177 (1974).

    Article  CAS  Google Scholar 

  22. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Article  Google Scholar 

  23. M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B 24, 3037 (1981).

    Article  Google Scholar 

  24. S. M. Foiles and M. S. Daw, J. Mater. Res. 2, 5 (1987).

    Article  CAS  Google Scholar 

  25. C. D. Flynn, Phys. Rev. 171, 682 (1968).

    Article  CAS  Google Scholar 

  26. Metals Reference Book, edited by C. J. Smith (Butterworth, London, 1976), 5th ed., p. 186.

    Google Scholar 

  27. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Massachusetts Institute of Technology, Cambridge, MA, 1971).

    Google Scholar 

  28. R. W. Balluffi, J. Nucl. Mater. 69 & 70, 616 (1978).

    Google Scholar 

  29. W. Wycisk and M. Feller-Kniepmeier, J. Nucl. Mater. 69 & 70, 616 (1978).

    Article  Google Scholar 

  30. Y. A. Kraftmakher and P. G. Strelkov, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schmacher, W. Schilling, and J. Diehl (North-Holland, Amsterdam, 1970), p. 59.

    Google Scholar 

  31. R. A. Johnson, Cryst. Lattic Defects 1, 37 (1969).

    CAS  Google Scholar 

  32. M. S. Daw, M. I. Baskes, and S. M. Foiles (private communication).

  33. R. Fletcher and C. M. Reeves, Computer J. 7, 149 (1964).

    Article  Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971), 4th ed.

    Google Scholar 

  35. C. Janot, D. Mallejac, and B. George, C. R. Acad. Sci. (Paris) 270, 404 (1970).

    CAS  Google Scholar 

  36. V. O. Shestopol, Sov. Phys. Solid State 7, 2798 (1966).

    Google Scholar 

  37. G. M. Hood, J. Nucl. Mater. 96, 372 (1981).

    Article  CAS  Google Scholar 

  38. R. A. Johnson and J. R. Beeler, in Interatomic Potentials and Crystalline Defects, edited by J. K. Lee (The Metallurgical Society of AIME, New York, 1981), p. 165.

    Google Scholar 

  39. A. H. Foster, J. H. Harder, and D. J. Bacon, Mater. Sci. Forum 15–18, 849 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, D.J., Johnson, R.A. Simple embedded atom method model for fcc and hcp metals. Journal of Materials Research 3, 471–478 (1988). https://doi.org/10.1557/JMR.1988.0471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.0471

Navigation