Skip to main content
Log in

Analytic embedded atom method model for bcc metals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The requirements for fitting bcc metals within the EAM format are discussed and, for comparative purposes, the EAM format is cast in a normalized form. A general embedding function is defined and an analytic first- and second-neighbor model is presented. The parameters in the model are determined from the cohesive energy, the equilibrium lattice constant, the three elastic constants, and the unrelaxed vacancy formation energy. Increasing the elastic constants, increasing the elastic anisotropy ratio, and decreasing the unrelaxed vacancy formation energy favor stability of a close-packed lattice over bcc. A stable bcc lattice relative to close packing is found for nine bcc metals, but this scheme cannot generate a model for Cr because the elastic constants of Cr require a negative curvature of the embedding function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  Google Scholar 

  2. G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, Philos. Mag. A 56, 735 (1987).

    Article  Google Scholar 

  3. R. A. Johnson, Phys. Rev. B 37, 3924 (1988).

    Article  Google Scholar 

  4. D. J. Oh and R. A. Johnson, J. Mater. Res. 3, 471 (1988).

    Article  CAS  Google Scholar 

  5. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  6. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  7. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984); erratum Philos. Mag. A 53, 161 (1986).

    Article  Google Scholar 

  8. J. M. Harder and D. J. Bacon, Philos. Mag. A 54, 651 (1986).

    Article  Google Scholar 

  9. G. J. Ackland and R. Thetford, Philos. Mag. A 56, 15 (1987).

    Article  Google Scholar 

  10. S. M. Foiles, Phys. Rev. B 32, 3409 (1986).

    Google Scholar 

  11. D. J. Oh and R. A. Johnson, in “Atomistic Simulation of Materials: Beyond Pair Potentials”, 1988 World Materials Congress, ASM, to be published by Plenum Press.

  12. R. A. Johnson, Phys. Rev.134, A1329 (1964).

    Article  Google Scholar 

  13. R. A. Johnson, Phys. Rev. 145, 423 (1966).

    Article  CAS  Google Scholar 

  14. M. I. Baskes, Phys. Rev. Lett. 59, 2666 (1987).

    Article  CAS  Google Scholar 

  15. A. Banerjea and J. R. Smith, Phys. Rev. B 37, 6632 (1988).

    Article  Google Scholar 

  16. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Article  Google Scholar 

  17. M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B 24, 3037 (1981).

    Article  Google Scholar 

  18. American Institute of Physics Handbook (McGraw-Hill, New York, 1957).

  19. Charles Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 96.

    Google Scholar 

  20. Gene Simmons and Herbert Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (M. I. T. Press, Cambridge, MA, 1971). An average of the more recent data has been used.

    Google Scholar 

  21. R. Feder, Phys. Rev. B 2, 828 (1970).

    Article  Google Scholar 

  22. R. Feder and H. Charbnau, Phys. Rev. 149, 464 (1966).

    Article  CAS  Google Scholar 

  23. R. A. McDonald, R. C. Shukla, and D. K. Kahaner, Phys. Rev. B 29, 6489 (1984).

    Article  Google Scholar 

  24. K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Philos. Mag. A 40, 701 (1979).

    Article  Google Scholar 

  25. M. Tietze, S. Takaki, I. A. Schwirtlich, and H. Schultz, in Point Defects and Defect Interactions in Metals, edited by Jin-Ichi Takamura, Masao Doyama, and Michio Kiritani (North Holland, Amsterdam, 1982), p. 266.

    Google Scholar 

  26. R. Ziegler and H. E. Schaefer, in Vacancies and Interstitials in Metals and Alloys, edited by C. Abromeit and H. Wollenberger (Trans. Tech., Switzerland, 1987), p. 145.

    Google Scholar 

  27. K. Furderer, K-P. Doring, M. Gladisch, N. Haas, D. Herlach, J. Major, H-J. Mundinger, J. Rosenkranz, W. Schafer, L. Schimmele, M. Schmolz, W. Schwarz, and A. Seeger, in Vacancies and Interstitials in Metals and Alloys, edited by C. Abromeit and H. Wollenberger (Trans. Tech., Switzerland, 1987), p. 125.

    Google Scholar 

  28. L. De Schepper, G. Knuyt, L. M. Stals, D. Segers, L. Dorikens-Vanpraet, M. Dorikens, and P. Moser, in Vacancies and Interstitials in Metals and Alloys, edited by C. Abromeit and H. Wollenberger (Trans. Tech., Switzerland, 1987), p. 131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.A., Oh, D.J. Analytic embedded atom method model for bcc metals. Journal of Materials Research 4, 1195–1201 (1989). https://doi.org/10.1557/JMR.1989.1195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.1195

Navigation