Skip to main content
Log in

Raman spectroscopy of nanophase TiO2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Raman spectra are reported for consolidated nanophase TiO2 particles in their as-compacted state and after annealing at a variety of temperatures up to 1273 K. The Raman-active bands normally observed for the rutile form of TiO2 were present in as-compacted samples having average grain sizes in the range from about 10 to 100 nm. However, significant broadening of these bands was found, which was uncorrelated with initial grain size, but not necessarily with other synthesis-related factors. This broadening decreased upon isochronal annealing at elevated temperatures in air. Based upon these observations, it is concluded that nanophase TiO2 in the as-consolidated state contains significant defect concentrations within the rutile grains and that these intragrain defects and the grain-boundary regions as well have local atomic structures with the rutile symmetry, albeit with some short-range displacements. Some sporadic sample regions containing small amounts (<5%) of the anatase form of TiO2 were also found; these traces of anatase transformed to rutile upon annealing in air at temperatures above 883 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Microstructures, edited by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Rise National Laboratory, Roskilde, 1981), p. 15.

    Google Scholar 

  2. R. Birringer, U. Herr, and H. Gleiter, Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).

    Google Scholar 

  3. R. W. Siegel and H. Hahn, in Current Trends in the Physics of Materials, edited by M. Yussouff (World Scientific Publ. Co., Singapore, 1987), p. 403.

    Google Scholar 

  4. R. W. Siegel and J. A. Eastman, in Multicomponent Ultrafine Microstructures, Mater. Res. Soc. Symp. Proc. 132 (1989) (in press).

  5. X. Zhu, R. Birringer, U. Herr, and H. Gleiter, Phys. Rev. B 35, 9085 (1987).

    Article  Google Scholar 

  6. U. Herr, J. Jing, R. Birringer, U. Gonser, and H. Gleiter, Appl. Phys. Lett. 50, 472 (1987).

    Article  CAS  Google Scholar 

  7. J. Horváth, R. Birringer, and H. Gleiter, Solid State Commun. 62, 319 (1987).

    Article  CAS  Google Scholar 

  8. T. Mütschele and R. Kirchheim, Scripta Metall. 21, 1101 (1987).

    Article  Google Scholar 

  9. R. W. Siegel, H. Hahn, S. Ramasamy, Z. Li, T. Lu, and R. Gronsky, in Proc. Interface Science and Engineering ’87, edited by R. Raj and S. L. Sass, J. Physique, Colloque C5, suppl., 681 (1988); R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).

  10. Z. Li, S. Ramasamy, H. Hahn, and R. W. Siegel, Mater. Lett. 6, 195 (1988).

    Article  CAS  Google Scholar 

  11. U. Balachandran and N. G. Eror, J. Solid State Chem. 42, 276 (1982).

    Article  CAS  Google Scholar 

  12. V. A. Maroni, J. Phys. Chem. Solids 49, 307 (1988).

    Article  CAS  Google Scholar 

  13. W. T. Pawlewicz, G. J. Exarhos, and W. E. Conaway, Appl. Optics 22, 1837 (1983).

    Article  CAS  Google Scholar 

  14. G. J. Exarhos, J. Chem. Phys. 81, 5211 (1984); Mater. Res. Soc. Symp. Proc. 48, 461 (1985).

    Article  CAS  Google Scholar 

  15. S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev. 154, 522 (1967).

    Article  CAS  Google Scholar 

  16. Y. Hara and M. Nicol, phys. stat. sol. (b) 94, 317 (1979).

    Article  CAS  Google Scholar 

  17. L. A. Bursill, B. G. Hyde, O. Terasaki, and D. Watanabe, Philos. Mag. 20, 347 (1969).

    Article  CAS  Google Scholar 

  18. J. S. Anderson and R. J. D. Tilley, J. Solid State Chem. 2, 472 (1970).

    Article  CAS  Google Scholar 

  19. J. E. Epperson, R. W. Siegel, J. W. White, T. E. Klippert, A. Narayanasamy, J. A. Eastman, and F. Trouw, in Multicomponent Ultra-fine Microstructures, Mater. Res. Soc. Symp. Proc. 132 (1989) (in press).

  20. L. H. Edelson and A. M. Glaeser, J. Am. Ceram. Soc. 71, 225 (1988).

    Article  CAS  Google Scholar 

  21. S. M. Vovk, M. Ya. Tsenter, Ya. S. Bobovich, and L. M. Sharygin, Opt. Spectrosc. 55, 476 (1983).

    Google Scholar 

  22. Ya. S. Bobovich, S. M. Vovk, V. I. Petrov, M. Ya. Tsenter, and L. M. Sharygin, Opt. Spectrosc. 59, 834 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melendres, C.A., Narayanasamy, A., Maroni, V.A. et al. Raman spectroscopy of nanophase TiO2. Journal of Materials Research 4, 1246–1250 (1989). https://doi.org/10.1557/JMR.1989.1246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.1246

Navigation