Skip to main content
Log in

On the nature of the oxygen-related defect in aluminum nitride

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The oxygen-related defect in an aluminum nitride (AIN) single crystal and in polycrystalline ceramics is investigated utilizing photoluminescence spectroscopy, thermal conductivity measurements, x-ray diffraction lattice parameter measurements, and transmission electron microscopy. The results of these measurements indicate that at oxygen concentrations near 0.75 at.%, a transition in the oxygen accommodating defect occurs. On both sides of this transition, simple structural models for the oxygen defect are proposed and shown to be in good agreement with the thermal conductivity and lattice parameter measurements, and to be consistent with the formation of various extended defects (e.g., inversion domain boundaries) at higher oxygen concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. McCauley and N. D. Corbin, Progress in Ceramics, edited by F. L. Riley (Martinus Nijhoff Publishers, Boston, MA, 1983), p. 111.

  2. K. H. Jack, J. Mater. Sci. 11, 1135 (1976).

    Article  CAS  Google Scholar 

  3. S. F. Bartram and G. A. Slack, Acta Cryst. B35, 2281 (1979).

  4. T. Sakai, Sintering – Theory and Practice, edited by S. Pejounik and M. M. Ristic (Elsevier Scientific Publishing, Amsterdam, 1982), p. 591.

  5. G. Van Tendeloo, K. T. Faber, and G. Thomas, J. Mater. Sci. 18, 525 (1983).

    Article  Google Scholar 

  6. J. W. McCauley, K. M. Krishnan, R. S. Rai, G. Thomas, A. Zangville, R. W. Doser, and N. D. Corbin, Ceramic Microstructures ‘86, edited by J. Pask and A. Evans (Plenum Press, New York, 1988), p. 577.

  7. S. Pacesova and L. Jastrabik, Czech. J. Phys. B29, 913 (1979).

  8. J. Pastrnak and L. Roskovcova, Phys. Status Solidi 26, 591 (1968).

    Article  CAS  Google Scholar 

  9. F. S. Ohuchi and R. H. French, J. Vac. Sci. Technol. A6, 1695 (1988).

  10. J. Pastrnak, S. Pocesova, and L. Roskovcova, Czech. J. Phys. B24, 1149 (1974).

  11. J. H. Harris and R. A. Youngman, in Advanced Electronic Packaging Materials, edited by J. Partridge, C-Y. Li, C. J. Chen, and A. Barfknecht (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 253.

  12. N. Kuramoto, H. Taniguchi, Y. Numata, and I. Aso, Yogyo-Kyokai-Shi 93, 41 (1985).

    Article  Google Scholar 

  13. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).

    Article  CAS  Google Scholar 

  14. G. A. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  CAS  Google Scholar 

  15. Y Kurokawa, K. Utsumi, and H. Takamizawa, J. Am. Ceram. Soc. 71, 588 (1988).

    Article  CAS  Google Scholar 

  16. A. Virkar, T. B. Jackson, and R. Cutler, J. Am. Ceram. Soc. 72, 203 (1989).

    Article  Google Scholar 

  17. R. A. Youngman, J. H. Harris, and D. A. Chernoff, Ceramic Transactions 5, 399 (1989).

    Google Scholar 

  18. G. A. Jeffrey, G. S. Parry, and R. L. Mozzi, J. Chem. Phys. 25, 1024 (1956).

    Article  CAS  Google Scholar 

  19. J. Haase, D. Freude, T. Frohlich, G. Himpel, F. Kerbe, E. Lippmaa, H. Pfeifer, P. Sarv, H. Schafer, and B. Seiffert, Chem. Phys. Lett. 156, 328 (1989).

    Article  CAS  Google Scholar 

  20. R. Dinwiddie and D. Onn, in Electronic Packaging Materials, edited by J. Partridge, C-Y. Li, C. J. Chen, and A. Barfknecht (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 241.

  21. R. C. Enck and R. D. Harris, ibid., p. 235.

  22. J. P. Sachet, J. Y. Laval, and D. Broussaud, Silicates Industriels 7–8, 113 (1989).

    Google Scholar 

  23. R. A. Youngman, J. H. Harris, P. A. Labun, and R. J. Graham, in Electronic Packaging Materials, edited by J. Partridge, C-Y. Li, C. J. Chen, and A. Barfknecht (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 271.

  24. S. McKernan and C. B. Carter, ibid., p. 259.

  25. A. Westwood and M. Notis, ibid., p. 265.

  26. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  Google Scholar 

  27. G. A. Slack and T. F. McNelly, J. Cryst. Growth 34, 263 (1976).

    Article  CAS  Google Scholar 

  28. R. C. Enck, R. D. Harris, and R. A. Youngman, Ceramic Transactions 5, 214 (1989).

    Google Scholar 

  29. D. B. Wiles and R. Young, J. Appl. Cryst. 14, 149 (1981).

    Article  CAS  Google Scholar 

  30. J. H. Harris and R. A. Youngman (in preparation).

  31. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960).

    Google Scholar 

  32. V. Schomaker and D. P. Stevenson, J. Chem. Soc. 63, 37 (1941).

    Article  CAS  Google Scholar 

  33. We cannot rule out a different oxygen accommodation mechanism in the very low oxygen concentration range (<0.1%) because samples could not be prepared at this purity level.

  34. P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951).

  35. P. G. Klemens, Proc. Roy. Soc. (London) A68, 113 (1955).

  36. P. G. Klemens, Phys. Rev. 119, 507 (1960).

    Article  CAS  Google Scholar 

  37. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  CAS  Google Scholar 

  38. J. Callaway and H. C. vonBaeyer, Phys. Rev. 120, 1149 (1960).

    Article  CAS  Google Scholar 

  39. J. E. Parrott, Proc. Roy. Soc. (London) 81, 726 (1963).

    Article  CAS  Google Scholar 

  40. Engineering Property Data on Selected Ceramics (Metals and Ceramics Information Center, Battelle Institute, Columbus, OH, 1976), p. 15.

  41. C. A. Ratsifaritana and P. G. Klemens, Int. J. Thermophysics 8, 737 (1987).

    Article  CAS  Google Scholar 

  42. T. Noguchi and M. Mizuno, Kogyo Kogaku Zasshi 70, 839 (1967).

    Google Scholar 

  43. M. F. Denanot and J. Rabier, J. Mater. Sci. 24, 1594 (1989).

    Article  CAS  Google Scholar 

  44. R. A. Youngman, Proc. Elec. Micros. Soc. Amer., edited by G. W. Bailey (San Francisco Press, San Francisco, CA, 1988), p. 547.

  45. S. Hagege, S. Tanaka, and Y. Ishida, J. Jpn. Inst. Metals 52, 1192 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.H., Youngman, R.A. & Teller, R.G. On the nature of the oxygen-related defect in aluminum nitride. Journal of Materials Research 5, 1763–1773 (1990). https://doi.org/10.1557/JMR.1990.1763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1763

Navigation