Skip to main content
Log in

Oxygen adsorption and VDR effect in (Sr, Ca)TiO3−x based ceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The relation between the oxygen adsorption and the voltage dependence of the resistor (VDR effect) in (Sr, Ca)TiO3−x based ceramics has been investigated. The nonlinearity of the voltage-current characteristics increased with increasing the barrier height, which is thought to be generated by the oxygen chemisorption. Acceptor type trap levels were detected by means of a zero biased DLTS technique at high temperatures. These interfacial energy levels changed with reoxidizing temperatures, and the change can be explained by the degradation of the chernisorbed oxygen. The high temperature type of the chemisorbed oxygen as O2− and O is relatively stable due to the strong pinning effect of trapped electrons, with reoxidizing anneals of grain surfaces above the oxidation temperature, and it contributes greatly to the VDR effect. It is concluded that energy barriers are caused by the interface states generated by the chemisorbed oxygen on grain surfaces and that they determine the VDR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yamaoka, M. Masuyama, and M. Fukui, Am. Ceram. Soc. Bull. 62, 698 (1983).

    CAS  Google Scholar 

  2. D. Kaino, J. Funayama, and N. Yamaoka, Jpn. J. Appl. Phys. 24, Suppl. 24-3, 120 (1985).

    Article  Google Scholar 

  3. M. Fujimoto, Y-M. Chiang, A. Roshko, and W. D. Kingery, J. Am. Ceram. Soc. 68, C-300 (1985).

    Article  CAS  Google Scholar 

  4. M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971).

    Article  CAS  Google Scholar 

  5. L. M. Levinson and H. R. Philipp, J. Appl. Phys. 46, 1332 (1975).

    Article  CAS  Google Scholar 

  6. K. Mukae, K. Tsuda, and I. Nagasawa, Jpn. J. Appl. Phys. 16, 1361 (1977).

    Article  CAS  Google Scholar 

  7. K. Eda, J. Appl. Phys. 49, 2964 (1978).

    Article  CAS  Google Scholar 

  8. J. Bernacconi, S. Strässler, B. Knecht, H. P. Klein, and A. Menth, Solid State Commun. 21, 867 (1977).

    Article  Google Scholar 

  9. G. E. Pike and C. H. Seager, J. Appl. Phys. 50, 3414 (1979).

    Article  CAS  Google Scholar 

  10. R. Einzinger, Appl. Surf. Sci. 3, 340 (1979).

    Article  Google Scholar 

  11. G.D. Mahan, L. M. Levinson, and H.R. Philipp, J. Appl. Phys. 50, 2799 (1979).

    Article  CAS  Google Scholar 

  12. G. E. Pike, S. R. Kurtz, and P. L. Gourley, J. Appl. Phys. 57, 5512 (1985).

    Article  CAS  Google Scholar 

  13. R. Salmon, J. P. Bonnet, M. Graciet, M. Onillon, and P. Hagen-muller, Solid State Commun. 34, 301 (1980).

    Article  CAS  Google Scholar 

  14. E. Sonder, M.M. Austin, and D. L. Kinser, J. Appl. Phys. 54, 3566 (1983).

    Article  CAS  Google Scholar 

  15. F.A. Selim, T. K. Gupta, P. L. Hower, and W. G. Carlson, J. Appl. Phys. 51, 765 (1980).

    Article  CAS  Google Scholar 

  16. M. H. Sukkar, H. L. Tuller, and K. H. Johnson, in Grain Boundaries in Semiconductors, edited by H. J. Leamy, G. E. Pike, and C. H. Seager (North-Holland, New York, 1982), p. 141.

    Google Scholar 

  17. L. M. Levinson, in Grain Boundaries in Semiconductors, edited by H.J. Leamy, G.E. Pike, and C.H. Seager (North-Holland, New York, 1982), p. 363.

    Google Scholar 

  18. S. Fujitsu, H. Toyoda, and H. Yanagida, J. Am. Ceram. Soc. 70, C-71 (1987).

    Article  Google Scholar 

  19. S. Fujitsu, H. Toyoda, K. Koumoto, H. Yanagida, M. Chikazawa, and T. Kanazawa, Bull. Chem. Soc. Jpn. 61, 1979 (1988).

    Article  CAS  Google Scholar 

  20. S. Fujitsu, H. Toyoda, and H. Yanagida, J. Ceram. Soc. Jpn. 96, 119 (1988). (in Japanese)

    Article  CAS  Google Scholar 

  21. S. Fujitsu, H. Toyoda, and H. Yanagida, Solid State Ionics 32/33, 482 (1989).

    Article  Google Scholar 

  22. K. Tsuda and K. Mukae, J. Ceram. Soc. Jpn. 97, 1211 (1989). (in Japanese)

    Article  CAS  Google Scholar 

  23. S. Fujitsu, H. Toyoda, and H. Yanagida, to be published in J. Am. Ceram. Soc.

  24. J. P. Gambino, W. D. Kingery, G. E. Pike, H. R. Philipp, and L.M. Levinson, J. Appl. Phys. 61, 2571 (1987).

    Article  CAS  Google Scholar 

  25. D.L. Losee, J. Appl. Phys. 46, 2204 (1975).

    Article  CAS  Google Scholar 

  26. J.F. Cordaro, Y. Shim, and J.E. May, J. Appl. Phys. 60, 4186 (1986).

    Article  CAS  Google Scholar 

  27. K. Kobayashi, M. Takata, Y. Fujimoto, and S. Okamoto, J. Appl. Phys. 60, 4191 (1986).

    Article  CAS  Google Scholar 

  28. Y. Shim and J. F. Cordaro, J. Am. Ceram. Soc. 71, 184 (1988).

    Article  CAS  Google Scholar 

  29. D.V. Lang, J. Appl. Phys. 45, 3023 (1979).

    Article  Google Scholar 

  30. K. Tsuda and K. Mukae, in High Tech Ceramics, edited by P. Vincenzini (Elsevier Science Publishers B.V., Amsterdam, 1987), Part B, p. 1781.

    Google Scholar 

  31. M. Fujimoto and W.D. Kingery, J. Am. Ceram. Soc. 68, 169 (1985).

    Article  CAS  Google Scholar 

  32. M. Fujimoto, J. Tanaka, and S. Shirasaki, Jpn. J. Appl. Phys. 27, 1162 (1988).

    Article  CAS  Google Scholar 

  33. N-H. Chan, R.K. Sharma, and D.M. Smyth, J. Electrochem. Soc. 128, 1762 (1981).

    Article  CAS  Google Scholar 

  34. K. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys. 50, 4475 (1979).

    Article  CAS  Google Scholar 

  35. C. Yu, Y. Shimizu, H. Arai, and S. Sheng, J. Mater. Sci. Lett. 8, 765 (1989).

    Article  CAS  Google Scholar 

  36. T. Takeda and A. Watanabe, J. Phys. Soc. Jpn. 21, 267 (1966).

    Article  CAS  Google Scholar 

  37. M. Che and A. J. Tench, in Advances in Catalysis, edited by D. D. Eley, H. Pines, and P. B. Weisz (Academic Press, 1982), Vol. 31, p. 77.

  38. M. Che and A. J. Tench, in Advances in Catalysis, edited by D. D. Eley, H. Pines, and P. B. Weisz (Academic Press, 1983), Vol. 32, p.1.

  39. J.O. Cope and I.D. Campbell, J. Chem. Soc, Faraday Trans. 1, 69, 1 (1971).

    Google Scholar 

  40. R.C. Bray, G.N. Mautner, E.M. Fielden, and C.I. Carle, in Superoxide and Superoxide Dismutases, edited by A. M. Michelson, J. M. McCord, and I. Fridovich (Academic Press, 1977), p. 61.

  41. S. Schlick and L. Kevan, J. Chem. Phys. 72, 784 (1980).

    Article  CAS  Google Scholar 

  42. M. Avudaithai and T. R. N. Kutty, Mater. Res. Bull. XXIII, 1675 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, Y., Ichinose, N. Oxygen adsorption and VDR effect in (Sr, Ca)TiO3−x based ceramics. Journal of Materials Research 5, 2910–2922 (1990). https://doi.org/10.1557/JMR.1990.2910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2910

Navigation