Skip to main content
Log in

A microstructural study of a Ni2AlTi–Ni(Al, Ti)–Ni3(Al, Ti) three-phase alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Early studies showed that the two-phase ordered alloy of semi-coherent β–Ni2AlTi (L21) and β–Ni(Al, Ti) (B2) exhibits excellent elevated-temperature creep strength, and the precipitation of the “rod-like” γ’–Ni3(Al, Ti) (L12) from either the β or the β’ phase improves the room-temperature ductility of the phases concerned. In the present investigation an attempt is being made to combine the above microstructural features in β’–β–γ’ three-phase alloys and for this purpose the composition Ni63Al22Ti15, near the β’–γ’ edge of the three-phase region in the recently estimated Ni–Al–Ti isotherm at 900 °C, has been selected for detailed study. The expected precipitation of both the β and the γ’ phases occurs in the dendritically solidified β’ phase after a 1100 °C/3 h homogenization and a 900 °C/115 h anneal, although the original interdendritic γ’ phase remains. The morphology of the two types of precipitates and their orientation relationships with the β’ parent phase have been examined using transmission electron microscopy and diffraction, and the experimentally obtained data compared with those predicted by Khachaturyan’s elastic strain energy theory. The β precipitates are nearly cuboidal in shape and are bounded by interface dislocations of aβ〈100〉 edge type. For the β precipitates, both morphology and orientation relation agree with those predicted by the theory. The γ’ precipitates were found to obey the Nishiyama–Wassermann orientation relationship with the parent phase. These precipitates are about 0.5 μm thick and elongated along their 〈211〉 directions, and in all cases consist of two twin-related variants, giving a sword-like morphology. The {i11} twin planes, parallel to the {1i0} of the parent phase, have been identified as the habits of the precipitation. The theory, however, predicts a habit of {0.732, 0, 0.681}γ’ type and a Baker–Nutting orientation relationship. This discrepancy has been attributed to the inapplicability of some assumptions made in the theory: equal elastic moduli between parent and product phases and a tetragonal transformation strain based on Bain’s model of the bcc → fcc transformation. The presence of diffuse streaks in the diffraction patterns of the parent phase, which can be correlated with the 〈110〉〈1i0〉 shear waves, suggests high elastic anisotropy and lends credit to Zener’s model. Crystallographic consideration shows that this model is feasible for the L21 → L12 transformation and explains the observed morphological features of the γ’ precipitates. Some earlier studies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Strutt, R. S. Polvani, and J. C. Ingram, Metall. Trans. A 7A, 23 (1976).

  2. R.S. Polvani, W-S. Tzeng, and P.R. Strutt, Metall. Trans. A 7A, 33 (1976).

  3. J. D. Whittenberger, R. K. Viswanadham, S. K. Mannan, and K. S. Kumar, J. Mater. Res. 4, 1164 (1989).

    Article  CAS  Google Scholar 

  4. R.W. Cahn, Metals Mater. & Processes 1, 1 (1989).

    CAS  Google Scholar 

  5. P. S. Khadkikar, K. Vedula, and B. S. Shabel, in High-Temperature Ordered Intermetallic Alloys, II, edited by N. S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 157.

  6. K. C. Russell and J.W. Edington, Metal. Sci. J. 6, 20 (1972).

    Article  CAS  Google Scholar 

  7. R. Moskovic, J. Mater. Sci. 13, 1901 (1978).

    Article  CAS  Google Scholar 

  8. S. R. Schuon, lecture presented at Symposium on Intermetallics, TMS-AIME, Phoenix, AZ, January 1988.

  9. W. Bollmann, Phys. Status Solidi (a)21, 543 (1974).

  10. R.C. Ecob and B. Ralph, Acta Metall. 29, 1037 (1981).

    Article  CAS  Google Scholar 

  11. J.M. Rigsbee and H.I. Aaronson, Acta Metall. 27, 351 (1979).

    Article  CAS  Google Scholar 

  12. D. A. Smith, K. M. Knowles, H. I. Aaronson, and W. A.T. Clark, in Solid-Solid Phase Transformation, Proc. Int. Conf., edited by H.I. Aaronson, D.E. Laughlin, R.E. Sekerka, and C.M. Wayman (Pittsburgh, PA, 1981), p. 587.

  13. S. H. Wen, E. Kostlan, M. Hong, A. G. Khachaturyan, and J.W. Morris, Jr., Acta Metall. 29, 1247 (1981).

    Article  CAS  Google Scholar 

  14. A. G. Khachaturyan, Theory of Structural Transformation in Solids (John Wiley & Sons, New York, 1983), Chaps. 7–12.

  15. C. M. Wayman, in High-Temperature Ordered Intermetallic Alloys, edited by C.C. Koch, C.T. Liu, and N.S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 76.

  16. L. Delaey, A. J. Perkins, and T. B. Massalski, J. Mater. Sci. 7, 1197 (1972).

    Article  CAS  Google Scholar 

  17. M. J. Kelly and W. M. Stobbs, Scripta Metall. 13, 919 (1979).

    Article  CAS  Google Scholar 

  18. C Zener, Phys. Rev. 71, 846 (1947).

    Article  CAS  Google Scholar 

  19. C Zener, Elasticity and Anelasticity of Metals (Univ. of Chicago Press, Chicago, IL, 1948), Chap. 4.

  20. P. Nash, V. Vejins, and WW. Liang, Bull. Alloy Phase Diag. 3, 369 (1982).

    Article  Google Scholar 

  21. P. Nash and W.W. Liang, Metall. Trans. A 16A, 319 (1985).

    Article  CAS  Google Scholar 

  22. N. Saunders, private communication (1989); to be published.

  23. K. Enami, J. Hasunuma, A. Nagasawa, and S. Nenno, Scripta Metall. 10, 879 (1976).

    Article  CAS  Google Scholar 

  24. A. Lasalmonie, Scripta Metall. 11, 527 (1977).

    Article  CAS  Google Scholar 

  25. F. Reynaud, Scripta Metall. 11, 765 (1977).

    Article  CAS  Google Scholar 

  26. K. Enami, A. Nagasawa, and S. Nenno, Scripta Metall. 12, 223 (1978).

    Article  CAS  Google Scholar 

  27. R. Portier, D. Gratias, and W. M. Stobbs, in Proc. ICOMAT 79 (MIT Press, Cambridge, MA, 1979), p. 541.

  28. I. M. Robertson and C. M. Wayman, Philos. Mag. A 48, 421, 443, 629 (1983).

  29. L.E. Tanner, D. Schryvers, and S.M. Shapiro, Mater. Sci. Eng. A127, 205 (1990).

  30. I. M. Robertson and C. M. Wayman, Metallography17, 43 (1984).

  31. S. Chakravorty and C. M. Wayman, Metall. Trans. A 7A, 555, 569 (1976).

  32. Z. Nishiyama, Sci. Rep. Tohoku Univ. 23, 647 (1934).

    Google Scholar 

  33. G. Wassermann, Arch. Eisenhiittenwes. 16, 647 (1933).

    Google Scholar 

  34. W. J. Boettinger, L.A. Bendersky, F.S. Biancaniello, and J.W. Cahn, Mater. Sci. Eng. 98, 273 (1988).

    Article  CAS  Google Scholar 

  35. L.A. Bendersky, P.W. Voorhees, W.J. Boettinger, and W. C. Johnson, Scripta Metall. 22, 1029 (1988).

    Article  CAS  Google Scholar 

  36. R.D. Field, R. Darolia, and D.F. Lahrman, Scripta Metall. 23, 1469 (1989).

    Article  CAS  Google Scholar 

  37. R. J. Wasilewski, Trans. TMS-AIME236, 455 (1966).

  38. A. Ardell and R. B. Nicholson, Acta Metall. 14, 1295 (1966).

    Article  CAS  Google Scholar 

  39. M. H. Yoo, in High-Temperature Ordered Intermetallic Alloys, II, edited by N. S. Stoloff, C. C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 207.

  40. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallo-graphic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2, pp. 1038, 1043.

  41. N. Rusovic and H. Warlimont, Phys. Status Solidi44, 609 (1977).

  42. P. Georgopoulos and J. B. Cohen, Scripta Metall. 11, 147 (1977).

    Article  CAS  Google Scholar 

  43. R. Krachler, H. Ipser, and K. L. Komarek, J. Phys. Chem. Solids50, 1127 (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Leake, J.A. & Cahn, R.W. A microstructural study of a Ni2AlTi–Ni(Al, Ti)–Ni3(Al, Ti) three-phase alloy. Journal of Materials Research 6, 343–354 (1991). https://doi.org/10.1557/JMR.1991.0343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.0343

Navigation