Skip to main content
Log in

High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor deposited polycrystalline silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin poly-Si layers deposited at 625 °C by LPCVD that are used in silicon technology for microelectronics exhibit a pronounced additional x-ray diffraction peak at about 0.334 nm. High-resolution electron microscopy (HREM) reveals that this peak stems from {011̅0} reflections of a diamond hexagonal (dh) Si phase, which occurs as small inclusions with the orientation relationship (01̅1) ‖ (0001), [011] ‖ [21̅1̅0] to the diamond cubic (dc) Si matrix. Due to the high density of planar faults on {111}, the dh-Si phase also exists in the form of the 2H silicon polytype with the orientation relationship (1̅11̅) ‖ (0001), [011] ‖ [21̅1̅0]. In the first case the formation of the dh-Si phase may be understood by a multiple twinning transformation process, and in the second case by glide of Shockley partial dislocations on {111} planes. Various other hexagonal polytypes occur, which have all the {011̅0} reflections in common and make a major contribution to the 0.334 nm peak. The medium temperature of 625 °C for layer deposition leads to a 〈011〉 preferential orientation and a high density of twins as well as to high compressive stress in the poly-Si layer itself. This seems to promote the formation of dh-Si. The strong twinning behavior produces a typical tilt grain boundary between adjacent dh-Si grains: [21̅1̅0], (01̅16), Θ = 35°with a translation vector t = 1/2[033̅1] parallel to it. The dh-Si phase vanishes in this poly-Si film after annealing at temperatures above 1000 °C due to grain growth by recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.I. Kamins, Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic Publishers, Boston, MA, 1988).

    Book  Google Scholar 

  2. H. Cerva and H. Oppolzer, Springer Proceedings in Physics 35, 354 (1989).

    Article  Google Scholar 

  3. G. Harbeke, L. Krausbauer, E. F. Steigmeier, A. E. Widmer, H. F. Kappert, and G. Neugebauer, J. Electrochem. Soc. 131, 675 (1984).

    Article  CAS  Google Scholar 

  4. M. Hendriks, S. Radelaar, A. M. Beers, and J. Bloem, Thin Solid Films 113, 59 (1984).

    Article  CAS  Google Scholar 

  5. P. Pirouz, R. Chaim, U. Dahmen, and K. H. Westmacott, Acta Metall. Mater. 38, 313 (1990); 38, 323 (1990); 38, 329 (1990).

    Article  CAS  Google Scholar 

  6. T. Y. Tan, H. Foil, and S. M. Hu, Philos. Mag. A 44, 127 (1981).

    Article  CAS  Google Scholar 

  7. W. Bergholz, G. Zoth, H. Wendt, S. Sauter, and G. Asam, Siemens Res. Dev. Rep. 16, 241 (1987).

    CAS  Google Scholar 

  8. Y. Ishida and H. Ichinose, Springer Proceedings in Physics 35, 42 (1989).

    Article  Google Scholar 

  9. H. Cerva and H. Oppolzer, in High Resolution Electron Microscopy of Defects in Materials, edited by R. Sinclair, D. J. Smith, and U. Dahmen (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 67.

  10. C. B. Carter, Philos. Mag. A 50, 133 (1984).

    Article  CAS  Google Scholar 

  11. P. A. Stadelmann, Ultramicroscopy 21, 131 (1987).

  12. C. d’Anterroches and A. Bourret, Philos. Mag. A 49, 783 (1984).

    Article  Google Scholar 

  13. A. Bourret, Inst. Phys. Conf. Ser. No. 87, 39 (1987).

    CAS  Google Scholar 

  14. U. Dahmen, C. J. Hetherington, P. Pirouz, and K. H. Westmacott, Scripta Metall. 23, 269 (1989).

    Article  CAS  Google Scholar 

  15. H. Foil and C.B. Carter, Philos. Mag. A 40, 497 (1979).

    Article  Google Scholar 

  16. K. Maeda, K. Suzuki, S. Fujita, M. Ichihara, and S. Hyodo, Philos. Mag. A 57, 573 (1988).

    Article  CAS  Google Scholar 

  17. L. S. Ramsdell, Am. Mineral. 32, 64 (1947).

    CAS  Google Scholar 

  18. R. W. Glaisher, A. E. C. Spargo, and D. J. Smith, Ultramicroscopy 27, 117 (1989).

    Article  CAS  Google Scholar 

  19. H. Bender, A. De Veirman, J. Van Landuyt, and S. Amelinckx, Appl. Phys. A 39, 83 (1986).

    Article  Google Scholar 

  20. P. Pirouz, J. Yang, F. Ernst, and H-J. Moller, in High Resolution Microscopy of Materials, edited by W. Krakow, F. A. Ponce, and D.J. Smith (Mater. Res. Soc. Symp. Proc. 139, Pittsburgh, PA, 1989), p. 199.

  21. C.J.D. Hetherington, U. Dahmen, P. Pirouz, and K.H. Westmacott, in Proc. 47th Meeting of the Electron Microscopy Society of America, edited by G. W. Bailey (San Francisco Press Inc., San Francisco, CA, 1989), pp. 132–133.

  22. D.W. Pashley and M.J. Stowell, Philos. Mag. 8, 1605 (1963).

    Article  CAS  Google Scholar 

  23. Y. Lereah and E. Gruenbaum, Philos. Mag. A 50, 1 (1984).

    Article  CAS  Google Scholar 

  24. J. Adamczewska and T. Budzynski, Thin Solid Films 113, 271 (1984).

    Article  CAS  Google Scholar 

  25. H. Guckel, T. Randazzo, and D.W. Burns, J. Appl. Phys. 57, 1671 (1985).

    Article  CAS  Google Scholar 

  26. V. M. Koleshko, V. F. Belitsky, and I. V. Kiryushin, Thin Solid Films 165, 181 (1988).

    Article  CAS  Google Scholar 

  27. P. Pirouz, Scripta Metall. 21, 1463 (1987).

    Article  CAS  Google Scholar 

  28. P. Pirouz, Scripta Metall. 23, 401 (1989).

    Article  CAS  Google Scholar 

  29. P. Pirouz, Inst. Phys. Conf. Ser. No. 104, 49 (1989).

    Google Scholar 

  30. G. Das, J. Appl. Phys. 44, 4459 (1973).

    Article  CAS  Google Scholar 

  31. A. Bourret and W. Schroter, Ultramicroscopy 14, 97 (1984).

    Article  CAS  Google Scholar 

  32. T. I. Kamins and J. E. Turner, Solid State Technology, 80 (April 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerva, H. High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor deposited polycrystalline silicon. Journal of Materials Research 6, 2324–2336 (1991). https://doi.org/10.1557/JMR.1991.2324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.2324

Navigation