Skip to main content
Log in

The effect of strain rate and temperature on the tensile properties of NiAl

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tensile testing of cast and extruded binary NiAl was performed from 300 to 900 K at strain rates of 1.4 × 10−4 to 1.4 × 10−1 × s−1. The brittle-to-ductile transition temperature (BDTT) was dependent on strain rate, with a three order of magnitude increase in strain rate resulting in approximately a 200 K increase in transition temperature. Regardless of strain rate, at temperatures just above the BDTT the fracture strength increased significantly and the fracture morphology changed from mostly intergranular to predominantly transgranular. It was also determined that the mechanism responsible for the brittle-to-ductile transition in NiAl had an apparent activation energy of approximately 118 kJ/mol. These results support the argument that the mechanism for the brittle-to-ductile transition in NiAl is associated with the onset of a thermally activated deformation process. This process is probably dislocation climb controlled by short circuit diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Whittenberger, E. Arzt, and M. J. Luton, J. Mater. Res. 5, 2819 (1990).

    Article  CAS  Google Scholar 

  2. A. G. Rozner and R. J. Wasilewski, J. Inst. Metals 94, 169 (1966).

    CAS  Google Scholar 

  3. S. V. Raj, R. D. Noebe, and R. R. Bowman, Scripta Metall. 23, 2049 (1989).

    Article  CAS  Google Scholar 

  4. R. D. Noebe, R. R. Bowman, C. L. Cullers, and S. V. Raj, in High Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 589.

  5. C. C. Law and M. J. Blackburn, AFWAL-TR-87–4102, Final Report, 1987.

  6. K. H. Hahn and K. Vedula, Scripta Metall. 23, 7 (1989).

    Article  CAS  Google Scholar 

  7. D. P. Mason, D. C. Van Aken, R. D. Noebe, I. E. Locci, and K. L. King, in High Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 1033.

  8. E. M. Schulson and D. R. Barker, Scripta Metall. 17, 519 (1983).

    Article  CAS  Google Scholar 

  9. Ε. Μ. Schulson, in High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 193.

  10. E. P. George and C. T. Liu, J. Mater. Res. 5, 754 (1990).

    Article  CAS  Google Scholar 

  11. E. P. George, C. T. Liu, and J. J. Liao, in Alloy Phase Stability and Design, edited by G. M. Stocks, D. P. Pope, and A. F. Giamei (Mater. Res. Soc. Symp. Proc. 186, Pittsburgh, PA, 1991), p. 375.

  12. R. R. Bowman, R. D. Noebe, S. V. Raj, and I. E. Locci, accepted by Metall. Trans. A, 1991.

  13. R. D. Noebe, R. R. Bowman, C. L. Cullers, and S. V. Raj, in 3rd Annual HITEMP Review — 1990, NASA CP-10051, 1990, p. 20–1.

  14. E. M. Grala, in Mechanical Properties of Intermetallic Compounds, edited by J. H. Westbrook (John Wiley & Sons, Inc., New York, 1960), p. 358.

  15. J. H. Westbrook, H. E. Grenoble, and D. L. Wood, WADD-TR-60-184 Part V, 1964, p. 22.

  16. A. Ball and R. E. Smallman, Acta Metall. 14, 1349 (1966).

    Article  CAS  Google Scholar 

  17. A. Ball and R. E. Smallman, Acta Metall. 14, 1517 (1966).

    Article  CAS  Google Scholar 

  18. J. J. Kruisman, V. Vitek, and J. Th. M. DeHosson, Acta Metall. 36, 2729 (1988).

    Article  Google Scholar 

  19. Μ. V. Zeller, R. D. Noebe, and I. E. Locci, in 3rd Annual HITEMP Review—1990, NASA CP-10051, 1990, p. 21–1.

  20. G. Petton and D. Farkas, Scripta Metall. 25, 55 (1991).

    Article  CAS  Google Scholar 

  21. D. Miracle, Acta Metall. Mater. 39, 1457 (1991).

    Article  CAS  Google Scholar 

  22. D. R. Barker, M. E. Thesis, Dartmouth College, Hanover, NH, 1982.

  23. R. B. Graham, M. E. Thesis, Dartmouth College, Hanover, NH, 1984.

  24. R. T. Pascoe and C. W. A. Newey, Met. Sci. J. 2, 138 (1968).

    Article  CAS  Google Scholar 

  25. S. Reuss and H. Vehoff, Scripta Metall. Mater. 24, 1021 (1990).

    Article  CAS  Google Scholar 

  26. G. W. Groves and A. Kelly, Philos. Mag. 19, 977 (1969).

    Article  CAS  Google Scholar 

  27. A. E. Berkowitz, F. E. Jaumot, and F. C. Nix, Phys. Rev. 95, 1185 (1954).

    Article  CAS  Google Scholar 

  28. G. F. Hancock and B. R. McDonnell, Phys. Status Solidi (a) 4, 143 (1971).

    Article  CAS  Google Scholar 

  29. R. R. Vandervoort, A. K. Mukherjee, and J. E. Dorn, Trans. ASM 59, 930 (1966).

    CAS  Google Scholar 

  30. W. J. Yang and R. A. Dodd, Met. Sci. J. 7, 41 (1973).

    Article  CAS  Google Scholar 

  31. J. D. Whittenberger, J. Mater. Sci. 23, 235 (1988).

  32. J. Hancock, I. L. Dillamore, and R. E. Smallman, Met. Sci. J. 6, 152 (1972).

    Article  CAS  Google Scholar 

  33. R. E. Smallman, Modern Physical Metallurgy (Butterworth & Co., Boston, MA, 1985), 4th ed., pp. 448–451.

    Google Scholar 

  34. H. Brophy, R. M. Rose, and J. Wulff, Thermodynamics of Structure (John Wiley & Sons, Inc., New York, 1967), p. 82.

    Google Scholar 

  35. P. G. Shewmon, Diffusion in Solids (McGraw-Hill Book Company, Inc., New York, 1983), p. 171.

    Google Scholar 

  36. D. F. Lahrman, R. D. Field, and R. Darolia, in High Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 603.

  37. A. Lasalmonie, M. J. Lequeux, and P. Costa, in Proc. 5th Int. Conf. on Strength of Metals and Alloys, edited by P. Haasen, V. Gerold, and G. Kostorz (Pergamon Press, New York, 1979), p. 1317.

  38. R. D. Noebe and J. D. Cotton, to be submitted to J. Mater. Res.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noebe, R.D., Cullers, C.L. & Bowman, R.R. The effect of strain rate and temperature on the tensile properties of NiAl. Journal of Materials Research 7, 605–612 (1992). https://doi.org/10.1557/JMR.1992.0605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.0605

Navigation