Skip to main content
Log in

Grain size effects in nanocrystalline materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline materials have a grain size of only a few nanometers and are expected to possess very high hardness and strength values. Even though the hardness/strength is expected to increase with a decrease in grain size, recent observations have indicated that the hardness increases in some cases and decreases in other cases. A careful analysis of the available results on the basis of existing models suggests that there is a critical grain size below which the triple junction volume fraction increases considerably over the grain boundary volume fraction and this is suggested to be responsible for the observed softening at small grain sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. R. Birringer, Mater. Sci. and Engg. A117, 33 (1989).

    Article  CAS  Google Scholar 

  3. C. Suryanarayana and F. H. Froes, in Physical Chemistry of Powder Metals Production and Processing, edited by W. Murray Small (TMS, Warrendale, PA, 1989), p. 279; Metall. Trans. A23, 1071 (1992).

  4. R. W. Siegel, MRS Bulletin XV (10), 60 (1990).

  5. R. L. Bickerdike, D. Clark, J. N. Easterbrook, G. Hughes, W. N. Mair, P. G. Partridge, and H. C. Ranson, Int. J. Rapid Solidification 1, 305 (1984–85).

    Google Scholar 

  6. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  7. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. 23, 2013 (1989).

    Article  CAS  Google Scholar 

  8. G. W. Nieman, J. R. Weertman, and R. W. Siegel, in Clusters and Cluster-Assembled Materials, edited by R. S. Averback, J. Bernholc, and D. L. Nelson (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 581.

  9. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. et Mater. 24, 145 (1990).

    Article  CAS  Google Scholar 

  10. J. S. C. Jang and C. C. Koch, Scripta Metall. et Mater. 24, 1599 (1990).

    Article  CAS  Google Scholar 

  11. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson, and R. W. Armstrong, Scripta Metall. 20, 93 (1986).

    Article  CAS  Google Scholar 

  12. H. Höfler and R. S. Averback, Scripta Metall. et Mater. 24, 2401 (1990).

    Article  Google Scholar 

  13. C. C. Koch and Y. S. Cho, Nanostructured Materials 1 (1992, in press).

  14. K. Lu, W. D. Wei, and J. T. Wang, Scripta Metall. et Mater. 24, 2319 (1990).

    Article  CAS  Google Scholar 

  15. G. McMahon and U. Erb, Microstructural Sci. 17, 447 (1989).

    CAS  Google Scholar 

  16. D. Ostrander and U. Erb, Scripta Metall. et Mater, (in press).

  17. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Nanostructured Materials 1 (1992, in press).

  18. D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, England, 1951).

    Google Scholar 

  19. A. Lasalmonie and J. L. Strudel, J. Mater. Sci. 21, 1837 (1986).

    Article  CAS  Google Scholar 

  20. G. W. Nieman and J. R. Weertman, in Proc. Morris E. Fine Symposium (TMS, Warrendale, PA, Fall 1990, in press).

    Google Scholar 

  21. R. W. Armstrong, in Yield, Flow and Fracture of Polycrystals, edited by T. N. Baker (Applied Sci. Publ, London, England, 1983), p. 1.

  22. V. G. Gryaznov, V. A. Solov’ev, and L. I. Trusov, Scripta Metall. et Mater. 24, 1529 (1990).

    Article  Google Scholar 

  23. T. G. Nieh and J. Wadsworth, Scripta Metall. et Mater. 25, 955 (1991).

    Article  CAS  Google Scholar 

  24. G. Palumbo, S. J. Thorpe, and K. T. Aust, Scripta Metall et Mater. 24, 1347 (1990).

    Article  CAS  Google Scholar 

  25. W. Bollman, Philos. Mag. A49, 73 (1984).

    Article  Google Scholar 

  26. W. Bollman, Philos. Mag. A57, 637 (1988).

    Article  Google Scholar 

  27. W. Bollman, Mater. Sci. and Engg. A113, 129 (1989).

    Article  Google Scholar 

  28. V. B. Rabukhin, Phys. Met. Metallogr. 61, 149 (1986).

    Google Scholar 

  29. G. Palumbo, U. Erb, and K. T. Aust, Scripta Metall. et Mater. 24, 2347 (1990).

    Article  CAS  Google Scholar 

  30. D. K. Kim and K. Okazaki, Mater. Sci. Forum 8890, 553 (1992).

    Google Scholar 

  31. W. Rosenhain and D. Owen, J. Inst. Metals 10, 119 (1913).

    Google Scholar 

  32. M. A. Meyers and E. Ashworth, Philos. Mag. A46, 737 (1982).

    Article  Google Scholar 

  33. K. Saito, M. Iwamoto, Y. Nomura, and T. Nakamura, in Micro-mechanics and Inhomogeneity, edited by G. J. Weng et al. (Springer-Verlag, New York, 1990), p. 385.

  34. L. S. Palatnik, A. I. Il’inskii, and N. P. Sapelkin, Soviet Phys. -Solid State 8, 2016 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suryanarayana, C., Mukhopadhyay, D., Patankar, S.N. et al. Grain size effects in nanocrystalline materials. Journal of Materials Research 7, 2114–2118 (1992). https://doi.org/10.1557/JMR.1992.2114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.2114

Navigation