Skip to main content
Log in

Pulsed-power volume-heating chemical vapor infiltration

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The dynamic behavior of a novel chemical vapor infiltration (CVI) technique called pulsed-power volume-heating CVI is investigated using a diffusion-reaction model. In this technique, a volume-heating source (e.g., RF or microwave) is used to heat the preform. The source power is modulated in time (e.g., square-wave modulation) with a specific period and duty cycle. During the low-power part of the cycle, the temperature of the composite drops, reducing the reaction rate and thus allowing the precursor gas to diffuse into the composite, essentially “refilling” the composite. This alleviates reactant concentration gradients within the composite minimizing density nonuniformities. The high-power part of the cycle is used to achieve rapid reaction rates, thereby minimizing processing time. CVI of a carbon fiber preform with carbon resulting from methane decomposition is taken as an example to illustrate the technique. The results reveal the dependence of density uniformity and processing time on relevant variables such as pulse period, duty cycle, power density level, and methane mole fraction. It is shown that pulsed-power volume-heating CVI can provide a window of operating conditions leading to rapid and complete densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Karnitz, D. F. Craig, and S.L. Richlen, Am. Ceram. Soc. Bull. 70, 430 (1991).

    CAS  Google Scholar 

  2. J.A. Cornie, Y-M. Chiang, D.R. Uhlmann, A. Mortensen, and J. M. Collins, Am. Ceram. Soc. Bull. 65, 293 (1986).

    CAS  Google Scholar 

  3. J. R. Strife, J. J. Brennan, and K. M. Prewo, Ceram. Eng. Sci Proc. 11, 871 (1990).

    Article  CAS  Google Scholar 

  4. T. M. Besmann, R. A. Lowden, B. W. Sheldon, and D. P. Stinton, in Chemical Vapor Deposition, edited by K. E. Spear and G. W. Cullen (The Electrochemical Society, Pennington, NJ, 1990), p. 482.

    Google Scholar 

  5. S. Middleman, J. Mater. Res. 4, 1515 (1989).

    Article  CAS  Google Scholar 

  6. B. W. Sheldon, J. Mater. Res. 5, 2729 (1990).

    Article  CAS  Google Scholar 

  7. R. R. Melkote and K. F. Jensen, in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by T. M. Besmann and B. M. Gallois (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 67.

    Google Scholar 

  8. S. V. Sotirchos, AIChE J. 37, 1365 (1991).

    Article  CAS  Google Scholar 

  9. W. H. Sutton, Am. Ceram. Soc. Bull. 68, 376 (1989).

    CAS  Google Scholar 

  10. D. Gupta and J. W. Evans, J. Mater. Res. 6, 810 (1991).

    Article  CAS  Google Scholar 

  11. J. I. Morell, D. J. Economou, and N. R. Amundson, J. Electrochem. Soc. 139, 328 (1992).

    Article  CAS  Google Scholar 

  12. R. Jackson, Transport in Porous Catalysts (Elsevier Publishing Company, New York, 1977).

    Google Scholar 

  13. R. R. Melkote and K. F. Jensen, AIChE J. 35, 1942 (1989).

    Article  CAS  Google Scholar 

  14. M. M. Tomadakis and S. V. Sotirchos, AIChE J. 37, 74 (1991).

    Article  CAS  Google Scholar 

  15. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley & Sons, New York, 1960).

    Google Scholar 

  16. H. B. Palmer and T.J. Hirt, J. Phys. Chem. 67, 709 (1963).

    Article  CAS  Google Scholar 

  17. G. B. Skinner and R. A. Ruehrwein, J. Phys. Chem. 63, 1736 (1959).

    Article  CAS  Google Scholar 

  18. V. Kevorkian, C. E. Heath, and M. Boudart, J. Phys. Chem. 64, 964 (1960).

    Article  CAS  Google Scholar 

  19. C. de Boor, A Practical Guide to Splines (Springer-Veriag, New York, 1978).

    Book  Google Scholar 

  20. K. Sugiyama and Y. Ohzawa, J. Mater. Sci. 25, 4511 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morell, J.I., Economou, D.J. & Amundson, N.R. Pulsed-power volume-heating chemical vapor infiltration. Journal of Materials Research 7, 2447–2457 (1992). https://doi.org/10.1557/JMR.1992.2447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.2447

Navigation