Skip to main content
Log in

Structure property relationships in core-shell BaTiO3–LiF ceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A sintering, microstructural development and dielectric property study of BaTiO3–LiF ceramics was performed to assess the potential application of low-fired multilayer capacitors. Not only does LiF allow for sintering below 1000 °C, it also allows for the manipulation of dielectric properties and interfaces within BaTiO3–LiF ceramics. Using mixing laws, a model of the dielectric properties of the core-shell microstructures is presented that agrees well with the observed experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Rawal, M. Kahn, and W. R. Buessem, “Grain Core-Grain Shell Structures in BaTiO3 Based Dielectrics,” in Advances in Ceramics, edited by L. M. Levinson (The American Ceramic Society, Westerville, OH, 1981), Vol. 1.

  2. D. Hennings and G. Rosenstein, J. Am. Ceram. Soc. 67 4, 249–255 (1985).

    Article  Google Scholar 

  3. H.Y. Lu, J. S. Bow, and W.H. Deng, J. Am. Ceram. Soc. 73 12, 3562–3568 (1990).

    Article  CAS  Google Scholar 

  4. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).

  5. G.A. Smolenskii and V.A. Isupov, Sov. Phys. Tech. Phys. 24, 1375 (1954).

    CAS  Google Scholar 

  6. H. Schmelz and A. Meyer, Dtsch. Keram. Ges. 59 (8/9), 436–440 (1982).

  7. V. Krasevec, M. Drofenik, and D. Kolar, J. Am. Ceram. Soc. 73 4, 856–860 (1990).

    Article  CAS  Google Scholar 

  8. J.N. Lin and T.B. Wu, J. Am. Ceram. Soc. 72 9, 1709–1712 (1989).

    Article  CAS  Google Scholar 

  9. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Inc., New York, 1981).

  10. T. R. Armstrong and R. C. Buchanan, J. Am. Ceram. Soc. 73 5, 1268–1273 (1990).

    Article  CAS  Google Scholar 

  11. T. Endo, T. Kobayashi, T. Sato, and M. Shimada, J. Mater. Sci. 25, 619–621 (1990).

  12. G.V. Lewis and C.R.N.A. Catlow, Radiat. Eff. 73, 307–314 (1983).

    Article  CAS  Google Scholar 

  13. H.D. Megaw, Proc. Phys. Soc. London, Sect. A 189, 261–283 (1947).

    CAS  Google Scholar 

  14. H.J. Hagemann and H. Ihrig, Phys. Rev. B 20, 3871–3878 (1979).

    Article  CAS  Google Scholar 

  15. G.A. Smolenskii, J. Phys. Soc. Jpn., Suppl. 28, 26 (1970).

    Google Scholar 

  16. D. D. Viehland, Ph.D. Dissertation, Pennsylvania State University (1991).

  17. C.A. Randall and A.S. Bhalla, Jpn. J. Appl. Phys. 29 2, 327–333 (1990).

    Article  CAS  Google Scholar 

  18. I.C. Ho and S.L. Fu, J. Mater. Sci. 25, 4699–4703 (1990).

    Article  CAS  Google Scholar 

  19. D. Hennings and A. Schnell, J. Am. Ceram. Soc. 65 12, 539–544 (1982).

    Article  CAS  Google Scholar 

  20. L.E. Cross, Ferroelectrics 76, 241 (1987).

    Article  CAS  Google Scholar 

  21. H. Diamond, J. Appl. Phys. 32 5, 909–915 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, C.A., Wang, S.F., Laubscher, D. et al. Structure property relationships in core-shell BaTiO3–LiF ceramics. Journal of Materials Research 8, 871–879 (1993). https://doi.org/10.1557/JMR.1993.0871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0871

Navigation