Skip to main content
Log in

Formation of V2O5-based mixed oxides in flames

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

V2O5–TiO2 and V2O5–Al2O3 mixed oxide powders were synthesized in a hydrogen-oxygen flame using VOCl3, TiCl4, and Al(CH3)3 as precursors. The particle formation processes were investigated as a function of VOCl3 concentration by laser light-scattering and by collecting particles directly onto transmission electron microscopy grids. In the V2O5–TiO2 system, the oxides condense as an intimate mixture at all three VOCl3 concentrations. Spherical particles, 40 to 70 nm in diameter, are obtained. In the V2O5–Al2O3 system, chain-like particles composed of an intimate mixture of V2O5 and Al2O3 form at the lowest VOCl3 concentration. At high VOCl3 concentrations, the chain-like particles have a core-mantle structure (a core mainly of Al2O3 and a mantle mainly of V2O5). The crystalline form and the surface area of these mixed oxides were determined by x-ray diffractometry, FT-IR spectroscopy, and BET analysis by nitrogen desorption. These measurements indicate that amorphous vanadium oxide forms at low VOCl3 concentrations, and V2O5 is obtained at the higher VOCl3 concentrations. The structure of the amorphous vanadium oxide matches that published for vanadium oxide “supported” catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Hucknall, Selective Oxidation of Hydrocarbons (Academic Press, New York, 1974).

    Google Scholar 

  2. F.J.J.G. Janssen, F.M.G. van den Kerkhof, H. Boss, and J. R. H. Ross, J. Phys. Chem. 91, 6633 (1987).

    Article  CAS  Google Scholar 

  3. G.C. Bond, S. Flamerz, and R. Shukri, Faraday Discuss. Chem. Soc. 87, 65 (1989).

    Article  CAS  Google Scholar 

  4. G. C. Bond and K. Brückman, Faraday Discuss. Chem. Soc. 72, 235 (1981).

    Article  Google Scholar 

  5. F. Roozeboom, M.C. Mittelmeijer-Hazeleger, J.A. Moulijn, J. Medema, V. H. J. de Beer, and P. J. Gellings, J. Phys. Chem. 84, 2783 (1980).

    Article  CAS  Google Scholar 

  6. G. Busca, G. Centi, L. Marchetti, and F. Trifirò, Langmuir 2, 568 (1986).

    Article  CAS  Google Scholar 

  7. A. Vejux and P. Courtine, J. Solid State Chem. 23, 93 (1978).

    Article  CAS  Google Scholar 

  8. M. Inomata, K. Mori, A. Miyamoto, T. Ui, and Y. Murakami, J. Phys. Chem. 87, 754 (1983).

    Article  CAS  Google Scholar 

  9. M. Inomata, K. Mori, A. Miyamoto, T. Ui, and Y. Murakami, J. Phys. Chem. 87, 761 (1983).

    Article  CAS  Google Scholar 

  10. G.T. Went, S.T. Oyama, and A.T. Bell, J. Phys. Chem. 94, 4240 (1990).

    Article  CAS  Google Scholar 

  11. Y. Nakagawa, T. Ono, H. Miyata, and Y. Kubokawa, J. Chem. Soc, Faraday Trans. I 79, 2929 (1983).

    Article  CAS  Google Scholar 

  12. G. Centi, D. Pinelli, and F. Trifirò, J. Mol. Catal. 59, 221 (1990).

    Article  CAS  Google Scholar 

  13. G. Centi, E. Giamello, D. Pinelli, and F. Trifirò, J. Catal. 130, 220 (1991).

    Article  CAS  Google Scholar 

  14. J. Haber, A. Kozlowska, and R. Kozlowski, J. Catal. 102, 52 (1986).

    Article  CAS  Google Scholar 

  15. C-H. Hung and J.L. Katz, J. Mater. Res. 7, 1861 (1992).

    Article  CAS  Google Scholar 

  16. C-H. Hung, P.F. Miquel, and J.L. Katz, J. Mater. Res. 7, 1870 (1992).

    Article  CAS  Google Scholar 

  17. J. L. Katz and C-H. Hung, Combust. Sci. Technol. 82, 169 (1992).

    Article  CAS  Google Scholar 

  18. S. L. Chung and J. L. Katz, Combustion and Flame 61, 271 (1985).

    Article  CAS  Google Scholar 

  19. H.J. Kostkowski and H.P. Broida, J. Opt. Soc. Am. 46, 246 (1956).

    Article  CAS  Google Scholar 

  20. G. H. Dieke and H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).

    Article  CAS  Google Scholar 

  21. S.L. Chung, Ph.D. Thesis, The Johns Hopkins University, Baltimore (1985). Available from University Microfilms.

  22. R. A. Dobbins and C.M. Megaridis, Langmuir 3, 254 (1987).

    Article  CAS  Google Scholar 

  23. C-H. Hung, Ph.D. Thesis, The Johns Hopkins University, Baltimore (1991). Available from University Microfilms.

  24. G. Fabbri and P. Baraldi, Anal. Chem. 44, 1325 (1972).

    Article  CAS  Google Scholar 

  25. R. Kozlowski, R.F. Pettifer, and J.M. Thomas, J. Phys. Chem. 87, 5176 (1983).

    Article  CAS  Google Scholar 

  26. H. Eckert and I.E. Wachs, J. Phys. Chem. 93, 6796 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miquel, P.F., Hung, CH. & Katz, J.L. Formation of V2O5-based mixed oxides in flames. Journal of Materials Research 8, 2404–2413 (1993). https://doi.org/10.1557/JMR.1993.2404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2404

Navigation