Skip to main content
Log in

The radiation-induced crystalline-to-amorphous transition in zircon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comprehensive understanding of radiation effects in zircon, ZrSiO4, over a broad range of time scales (0.5 h to 570 million years) has been obtained by a study of natural zircon, Pu-doped zircon, and ion-beam irradiated zircon. Radiation damage in zircon results in the simultaneous accumulation of both point defects and amorphous regions. The amorphization process is consistent with models based on the multiple overlap of particle tracks, suggesting that amorphization occurs as a result of a critical defect concentration. The amorphization dose increases with temperature in two stages (below 300 K and above 473 K) and is nearly independent of the damage source (α-decay events or heavy-ion beams) at 300 K. Recrystallization of completely amorphous zircon occurs above 1300 K and is a two-step process that involves the initial formation of pseudo-cubic ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Brøgger, Amorf: Salmonsens store illustrerede Konversationslexikon (1893), Vol. 1, p. 742.

  2. R. C. Ewing, B. C. Chakoumakos, G. R. Lumpkin, and T. Murakami, MRS Bull. XII (4), 58 (1987).

  3. B. C. Chakoumakos, T. Murakami, G. R. Lumpkin, and R. C. Ewing, Science 236, 1556 (1987); B.C. Chakoumakos, W.C. Oliver, G. R. Lumpkin, and R. C. Ewing, Radiat. Eff. 118, 393 (1991); T. Murakami, B. C. Chakoumakos, and R. C. Ewing, in Advances in Ceramics (The American Ceramic Society, Wester-ville, OH, 1986), Vol. 20, p. 745.

  4. H. D. Holland and D. Gottfried, Acta Crystallogr. 8, 291 (1955).

    Article  CAS  Google Scholar 

  5. T. Murakami, B. C. Chakoumakos, R. C. Ewing, G. R. Lumpkin, and W.J. Weber, Am. Mineralogist 76, 1510 (1991).

    CAS  Google Scholar 

  6. J.A. Woodhead, G. R. Rossman, and L. T. Silver, Am. Mineralogist 76, 74 (1991).

    CAS  Google Scholar 

  7. A. B. Harker and J. F. Flintoff, in Scientific Basis for Nuclear Waste Management VII, edited by G. L. McVay (North Holland, New York, 1984), p. 513.

  8. L. Babsail, N. Hamelin, and P. Townsend, Nucl. Instrum. Methods B59/60, 1219 (1991).

    Article  Google Scholar 

  9. L. M. Wang and R. C. Ewing, Nucl. Instrum. Methods B65, 324 (1992).

    Article  CAS  Google Scholar 

  10. L. T. Silver, in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Special Publication No. 3, edited by H. P. Taylor, Jr., J. R. O’Neil, and I. R. Kaplan (The Geochemical Society, Pergamon Press, Terrytown, NY, 1991), p. 391.

  11. W.J. Weber, J. Mater. Res. 5, 2687 (1990); J. Am. Ceram. Soc. 76, 1729 (1993).

    Google Scholar 

  12. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

  13. T. J. Headley, R. C. Ewing, and R. F. Haaker, in 39th Ann. Proc. Electron Microscopy Soc. Amer., edited by G. W. Bailey (Atlanta, 1981), p. 112.

  14. T. J. Headley and R. C. Ewing, in Microbeam Analysis-1986, edited by A. D. Romig, Jr., and W. F. Chambers (San Francisco Press, San Francisco, CA, 1986), p. 141.

  15. M. L. Miller and R. C. Ewing, Ultramicrosc. 48, 203 (1993).

    Article  Google Scholar 

  16. T.J. Headley, R.C. Ewing, and R.F. Haaker, Nature 293, 449 (1981).

    Article  CAS  Google Scholar 

  17. R.C. Ewing and T.J. Headley, J. Nucl. Mater. 119, 102 (1983).

    Article  CAS  Google Scholar 

  18. W.J. Weber, J.W. Wald, and Hj. Matzke, J. Nucl. Mater. 138, 196 (1986).

    Article  CAS  Google Scholar 

  19. W.J. Weber and Hj. Matzke, Radiat. Eff. 98, 93 (1986).

    Article  CAS  Google Scholar 

  20. W.J. Weber and Hj. Matzke, Mater. Lett. 5, 9 (1986).

    Article  CAS  Google Scholar 

  21. F.W. Clinard, Jr., Am. Ceram. Soc. Bull. 65, 1181 (1986).

    CAS  Google Scholar 

  22. W.J. Nellis, Inorg. Nucl. Chem. 13, 393 (1977).

    Article  CAS  Google Scholar 

  23. W.J. Weber, J. Nucl. Mater. 98, 206 (1981).

    Article  CAS  Google Scholar 

  24. F. Farges and G. Calas, Am. Mineralogist 76, 60 (1991).

    CAS  Google Scholar 

  25. M.L. Swanson, J. R. Parsons, and C.W. Hoelke, in Radiation Effects in Semiconductors, edited by J. W. Corbett and G. D. Watkins (Gordon and Breach, New York, 1971), p. 359.

  26. J. F. Gibbons, Proc. IEEE 60, 1062 (1972).

    Article  CAS  Google Scholar 

  27. G. Carter and R. Webb, Radiat. Eff. Lett. 43, 19 (1979).

    Article  CAS  Google Scholar 

  28. R. Webb and G. Carter, Radiat. Eff. 42, 159 (1979).

    Article  Google Scholar 

  29. R.P. Webb and G. Carter, Radiat. Eff. 59, 69 (1981).

    Article  CAS  Google Scholar 

  30. G. Carter, Radiat. Eff. Lett. 86, 25 (1983).

    Article  CAS  Google Scholar 

  31. J. Koike, P.R. Okamoto, L.E. Rehn, and M. Meshii, J. Mater. Res. 4, 1143 (1989).

    Article  CAS  Google Scholar 

  32. E.R. Vance and B.W. Anderson, Mineralogical Mag. 38, 605 (1972).

    Article  CAS  Google Scholar 

  33. E. R. Vance and J. N. Boland, Radiat. Eff. 26, 135 (1975).

    Article  CAS  Google Scholar 

  34. E. R. Vance, Radiat. Eff. 24, 1 (1975).

    Article  CAS  Google Scholar 

  35. R. Roy, in Advances in Nucleation and Crystallization in Glasses, edited by L. L. Hench and S. W. Freiman (The American Ceramic Society, Westerville, OH, 1971), p. 51.

  36. G.R. Lumpkin and R.C. Ewing, Phys. Chem. Minerals 16, 2 (1988).

    Article  CAS  Google Scholar 

  37. C. W. Allen, L. L. Funk, E. A. Ryan, and A. Taylor, Nucl. Instrum. Methods B40/41, 553 (1989).

    Article  Google Scholar 

  38. J. Delage, O. Popoola, J. P. Villain, and P. Moine, Mater. Sci. Eng. A115, 133 (1989).

    Article  Google Scholar 

  39. G. Carter and M. J. Nobes, J. Mater. Res. 6, 2103 (1991).

    Article  CAS  Google Scholar 

  40. W. J. Weber and L. M. Wang, in Beam-Solid Interactions: Fundamentals and Applications, edited by M. A. Nastasi, N. Herbots, L. R. Harriott, and R. S. Averback (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 523.

  41. F.F. Morehead and B.L. Crowder, Radiat. Eff. 6, 27 (1970).

    Article  Google Scholar 

  42. W. J. Weber and L. M. Wang, in Proc. 7th Int. Conf. on Radiation Effects in Insulators, edited by N. Itoh and K. Tanimura (in press).

  43. A. S. Sandhu, L. Singh, R. C. Ramola, S. Singh, and H. S. Virk, Nucl. Instrum. Methods B 46, 122 (1990).

    Article  Google Scholar 

  44. L. M. Wang, R. C. Ewing, W. J. Weber, and R. K. Eby, in Beam-Solid Interactions: Fundamentals and Applications, edited by M. A. Nastasi, N. Herbots, L. R. Harriott, and R. S. Averback (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 451.

  45. H. Wiedersich, Radiat. Eff. 113, 97 (1990).

    Article  CAS  Google Scholar 

  46. L.E. Rehn, J. Nucl. Mater. 174, 144 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W.J., Ewing, R.C. & Wang, LM. The radiation-induced crystalline-to-amorphous transition in zircon. Journal of Materials Research 9, 688–698 (1994). https://doi.org/10.1557/JMR.1994.0688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0688

Navigation