Skip to main content
Log in

Formation and characterization of nanostructured V—P—O particles in flames: A new route for the formation of catalysts

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A counterflow diffusion flame burner was used to produce nanophase vanadium-phosphorus oxide powders in a hydrogen-oxygen flame. Liquid precursors, i.e., VOCl3 and PCl3, were used as source materials in a 1:1 ratio. In situ formation processes were investigated at two temperatures by laser light scattering, by emission and absorption spectroscopy, and by collecting particles directly onto carbon-coated TEM grids. At the higher temperature, the collected powders are spherical particles about 30 to 50 nm in diameter. At the lower temperature, the powders collected are chain-like structures composed of particles 5 to 10 nm in diameter. Particles formed in the burner were collected also from the burner’s flanges and from two auxiliary strips. Their crystalline phases and surface area were determined by x-ray diffractometry, FT-IR spectroscopy, and BET analysis by nitrogen desorption. These results indicate a strong influence of temperature on the crystalline phases of the powders. At the higher temperature, the powder collected is a mixture of VOPO4 · 2H2O and δ-VOPO4. This mixture forms Λ-VOPO4 upon subsequent reheating at 750 °C. At the lower temperature, the powders collected are a VOHxPO4 · yH2O phase and VO(H2PO4)2, and form β-VOPO4 and V(PO3)3, respectively, upon subsequent reheating at 750 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ai, P. Boutry, and R. Montarnal, Bull. Soc. Chim. Fr. 8, 2775 (1970).

    Google Scholar 

  2. M. Ai, P. Boutry, R. Montarnal, and G. Thomas, Bull. Soc. Chim. Fr. 8, 2783 (1970).

    Google Scholar 

  3. E. Bordes, Catal. Today 16, 27 (1993).

    Article  CAS  Google Scholar 

  4. E. Bordes, Catal. Today 1, 499 (1987).

    Article  CAS  Google Scholar 

  5. B.K. Hodnett, Catal. Rev.-Sci. Eng. 27, 373 (1985).

    Article  Google Scholar 

  6. G. Busca, F. Cavani, G. Centi, and F. Trifirò, J. Catal. 99, 400 (1986).

    Article  CAS  Google Scholar 

  7. E. Bordes and P. Courtine, J. Chem. Soc, Chem. Commun. 294 (1985).

  8. E. Bordes and P. Courtine, J. Catal. 57, 236 (1979).

    Article  CAS  Google Scholar 

  9. N. Harrouch Batis, H. Batis, A. Ghorbel, J. C. Vedrine, and J. C. Volta, J. Catal. 128, 248 (1991).

    Article  Google Scholar 

  10. P. Courtine, Solid State Chemistry in Catalysis, A.C.S. Symp. Series 279, 37 (1985).

    Article  CAS  Google Scholar 

  11. J.C. Volta and J.L. Portefaix, Appl. Catal. 18, 1 (1985).

    Article  CAS  Google Scholar 

  12. E. Bordes, P. Courtine, and G. Pannetier, Ann. Chim. 8, 105 (1973).

    CAS  Google Scholar 

  13. B. K. Hodnett and B. Delmon, Appl. Catal. 9, 203 (1984).

    Article  CAS  Google Scholar 

  14. G. Centi, I. Maneti, A. Riva, and F. Trifirò, Appl. Catal. 9, 177 (1984).

    Article  CAS  Google Scholar 

  15. G. Poli, I. Resta, O. Ruggeri, and F. Trifirò, Appl. Catal. 1, 395 (1981).

    Article  CAS  Google Scholar 

  16. F. Cavani, G. Centi, and F. Trifirò, Appl. Catal. 9, 191 (1984).

    Article  CAS  Google Scholar 

  17. J. W. Johnson, D. C. Johnston, and A. J. Jacobson, in Preparation of Catalysts IV (Elsevier Science Publishing, Amsterdam, 1987).

  18. E. Bordes, J. W. Johnson, A. Raminosona, and P. Courtine, Mater. Sci. Monograf. 28B, 887 (1985).

    CAS  Google Scholar 

  19. J.W. Johnson, D.J. Johnston, A.J. Jacobson, and J.F. Brody, J. Am. Chem. Soc. 106, 8123 (1984).

    Article  CAS  Google Scholar 

  20. D. D. Beck and R. W. Siegel, J. Mater. Res. 7, 2840 (1992).

    Article  CAS  Google Scholar 

  21. C-H. Hung and J.L. Katz, J. Mater. Res. 7, 1861 (1992).

    Article  CAS  Google Scholar 

  22. C-H. Hung, P. F. Miquel, and J. L. Katz, J. Mater. Res. 7, 1870 (1992).

    Article  CAS  Google Scholar 

  23. P.F. Miquel, C-H. Hung, and J.L. Katz, J. Mater. Res. 8, 2404 (1993).

    Article  CAS  Google Scholar 

  24. J. L. Katz and C-H. Hung, Combust. Sci. Technol. 82, 169 (1992).

    Article  CAS  Google Scholar 

  25. H.J. Kostkowski and H.P. Broida, J. Opt. Soc. Am. 46, 246 (1956).

    Article  CAS  Google Scholar 

  26. G. H. Dieke and H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).

    Article  CAS  Google Scholar 

  27. S.L. Chung, Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD (1985).

  28. A. G. Gaydon, The Spectroscopy of Flame (Chapman and Hall, London, 1974).

  29. R. M. Dagnall, K. C. Thompson, and T. S. West, Analyst 93, 72 (1968).

    Article  CAS  Google Scholar 

  30. C-H. Hung, Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD (1991).

  31. R. A. Dobbins and CM.. Megaridis, Langmuir 3, 254 (1987).

    Article  CAS  Google Scholar 

  32. G. V. Samsonov, The Oxide Handbook (Plenum Press, New York, 1973).

  33. The chain-like and the spherical particles collected on TEM grids in Flame 1 have structures and morphologies similar to those collected in Flame 2 (shown in Fig. 4), although their sizes are different, as stated in the text.

  34. G. Ladwig, Z. Anorg. Allg. Chem. 338, 266 (1965).

    Article  CAS  Google Scholar 

  35. A. Schneider, Thesis, Université de Bordeaux, France (1987).

  36. R.N. Bhargava and R.A. Condrate, Appl. Spectrosc. 3, 230 (1977).

    Article  Google Scholar 

  37. P. Amorós, R. Ibáñez, E. Martinez-Tamayo, A. Beltrán-Porter, and D. Beltrân-Porter, Mat. Res. Bull. XXIV, 1347 (1989).

    Article  Google Scholar 

  38. G. Ladwig, Z. Chem. 8, 307 (1968).

    Article  CAS  Google Scholar 

  39. Note that x-ray and FT-IR analyses of the powders collected in both Flames show the presence of hydrated phases. Because of the high temperatures, it is likely that the powders which actually formed in the flame are not hydrated, and that these highly hygroscopic powders hydrated on the collection strips or in later handling.

  40. A. V. Lavrov, L. S. Guzeeva, and P. M. Fedorov, Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 1280 (1974).

    Google Scholar 

  41. B.C. Tofield, G.R. Crane, G.A. Pasteur, and R. C. Sherwood, J. Chem. Soc. Dalton Trans, 1806 (1975).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miquel, P.F., Katz, J.L. Formation and characterization of nanostructured V—P—O particles in flames: A new route for the formation of catalysts. Journal of Materials Research 9, 746–754 (1994). https://doi.org/10.1557/JMR.1994.0746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0746

Navigation