Skip to main content
Log in

Fiber push-out testing apparatus for elevated temperatures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A newly developed apparatus has been designed for performing fiber push-out testing on continuous fiber-reinforced composites at elevated temperatures. This test measures the force at which a fiber resists being pushed by a flat-bottomed indenter moving at a constant speed. The applied load versus time curve characterizes the fiber debonding and sliding behavior. Extending measurements to elevated temperatures required incorporating sample/indenter heating in a nonoxidizing environment. With this new apparatus, fiber push-out tests have been performed up to 1100 δC in a vacuum of 10-6 Torr. A line-of-sight to the sample is maintained during the test which allows video monitoring of the push-out process. Results are shown for SCS-6 SiC fiber-reinforced Ti-24Al-llNb (at. %) and Ti-15V-3Cr-3Sn-3Al (at. %) matrix composites. The results are discussed in terms of residual stresses, interfacial wear, matrix ductility, and changing modes of interfacial failure. The effect of temperature-dependent interfacial wear on the interfacial roughness contribution to frictional shear stresses during fiber sliding is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Marshall, J. Am. Ceram. Soc. 67 (12), C258 (1984).

  2. D. B. Marshall and W. C. Oliver, J. Am. Ceram. Soc. 70 (8), 542 (1987).

    Article  CAS  Google Scholar 

  3. J. D. Bright, D. K. Shetty, C. W. Griffin, and S. Y. Limaye, J. Am. Ceram. Soc. 72 (10), 1891 (1989).

    Article  CAS  Google Scholar 

  4. J.I. Eldridge and P.K. Brindley, J. Mater. Sci. Lett. 8 (12), 1451 (1989).

    Article  CAS  Google Scholar 

  5. C. J. Yang, S. M. Jeng, and J-M. Yang, Scripta Metall. Mater. 24, 469 (1990).

    Article  CAS  Google Scholar 

  6. T. P. Weih and W. D. Nix, J. Am. Ceram. Soc. 74 (3), 524 (1991).

    Article  Google Scholar 

  7. M.C. Watson and T.W. Clyne, Acta Metall. Mater. 40 (1), 141 (1992).

    Article  CAS  Google Scholar 

  8. A. G. Evans, F. W. Zok, and J. Davis, Comp. Sci. Technol. 42, 3 (1991).

    Article  CAS  Google Scholar 

  9. W.A. Curtin, J. Am. Ceram. Soc. 74 (11), 2837 (1991).

    Article  CAS  Google Scholar 

  10. H. M. Chou, M.W. Barsoum, and M.J. Koczak, J. Mater. Sci. 26, 1216 (1991).

    Article  CAS  Google Scholar 

  11. D.B. Marshall, M.C. Shaw, and W.L. Morris, Acta Metall. Mater. 40 (3), 443 (1992).

    Article  CAS  Google Scholar 

  12. Y. Le Petitcorps, R. Pailler, and R. Naslain, Comp. Sci. Technol. 35, 207 (1989).

    Article  Google Scholar 

  13. J. Aveston, G. A. Cooper, and A. Kelly, in The Properties of Fibre Composites, Conference Proceedings (IPC Science and Technology Press Ltd., Teddington, U.K., 1971), p. 15.

  14. B.N. Cox, M.S. Dadkhah, M.R. James, D.B. Marshall, W.L. Morris, and M. Shaw, Acta Metall. Mater. 38 (12), 2425 (1990).

    Article  CAS  Google Scholar 

  15. G. Morscher, P. Pirouz, and A. H. Heuer, J. Am. Ceram. Soc. 73 (3), 713 (1990).

    Article  CAS  Google Scholar 

  16. M. K. Brun, J. Am. Ceram. Soc. 75 (7), 1914 (1992).

    Article  CAS  Google Scholar 

  17. J.I. Eldridge, Desktop Fiber Push-Out Apparatus, NASA TM 105341 (1991).

  18. J.I. Eldridge, in Intermetallic Matrix Composites II, edited by D. B. Miracle, D. L. Anton, and J. A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 325.

  19. P.D. Jero, R.J. Kerans, and T.A. Parthasarathy, J. Am. Ceram. Soc. 74 (11), 2793 (1991).

    Article  CAS  Google Scholar 

  20. T. J. Mackin, P. D. Warren, and A. G. Evans, Acta Metall. Mater. 40 (6), 1251 (1992).

    Article  CAS  Google Scholar 

  21. J.I. Eldridge, R.T. Bhatt, and J.D. Kiser, Ceram. Eng. Sci. Proc. 12 (7–8), 1152 (1991).

  22. L. J. Ghosn, P. Kantzos, J. I. Eldridge, and R. Wilson, in HITEMP Review 1992, Vol. 2, NASA CP-10104 (1992), p. 27-1 to 27–12.

  23. R. J. Kerans and T. A. Parthasarathy, J. Am. Ceram. Soc. 74 (7), 1585 (1991).

    Article  CAS  Google Scholar 

  24. D. A. Koss, M. N. Kallas, and J. R. Hellmann, in Intermetallic Matrix Composites II, edited by D. B. Miracle, D. L. Anton, and J. A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 303.

  25. M.N. Kallas, D.A. Koss, H.T. Hahn, and J.R. Hellmann, J. Mater. Sci. 27, 3821 (1992).

    Article  CAS  Google Scholar 

  26. H. J. Oel and V. D. Frechette, J. Am. Ceram. Soc. 69 (4), 342 (1986).

    Article  Google Scholar 

  27. P. Kantzos, J. Eldridge, D. A. Koss, and L. J. Ghosn, in Intermetallic Matrix Composites II, edited by D. B. Miracle, D. L. Anton, and J. A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 135.

  28. I. Roman and P. D. Jero, in Intermetallic Matrix Composites II, edited by D.B. Miracle, D.L. Anton, and J.A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 337.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldridge, J.I., Ebihara, B.T. Fiber push-out testing apparatus for elevated temperatures. Journal of Materials Research 9, 1035–1042 (1994). https://doi.org/10.1557/JMR.1994.1035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1035

Navigation