Skip to main content
Log in

Morphology of TiSi2 and ZrSi2 on Si(100) and (111) surfaces

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The morphologies of ZrSi2 on Si(111) and TiSi2 on Si(111) and (100) have been investigated, and the results compared and contrasted. Films were prepared by UHV deposition of Ti or Zr onto clean, reconstructed Si(100) or (111) substrates, and reacted by in situ annealing. The sheet resistivity of the ZrSi2 was measured and found to be 33-42 μΩ-cm. The morphologies were examined by transmission and scanning electron microscopy. In particular, the islanding properties were studied; both the temperature of the onset of islanding and the island characteristics were measured. The surface and interface energies have been determined from the contact angles of the silicide islands, according to a solid-state capillarity model. The system of ZrSi2 on Si(111) was found to have surface and interface energies lower than those of the system of TiSi2 on Si(100), but higher than those of the system TiSi2 on Si(111). ZrSi2 on Si(111) was found to island at a higher temperature than TiSi2 on either substrate, a result attributed to kinetic effects. Areal coverage of the islands was measured, and the results were consistent with the solid-state capillarity model. For both TiSi2 and ZrSi2, increasing faceted structure was observed with increasing anneal temperature. Preferred faceting planes were found to be of Si(111) and (100) type for TiSi2 islands and of Si(111) type for ZrSi2. Faceted islands were apparently epitaxial. As the solid-state capillarity model does not directly apply to islands with a faceted structure, an observation of the percentage of faceted islands produced by different annealing temperatures was used to suggest the processing conditions in which the model is applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Murarka, J. Vac. Sci. Technol. 17, 775 (1980).

    Article  CAS  Google Scholar 

  2. H. Jeon, C.A. Sukow, J. W. Honeycutt, G. A. Rozgonyi, and R.J. Nemanich, J. Appl. Phys. 71, 4269 (1992).

    Article  CAS  Google Scholar 

  3. H. Jeon, C.A. Sukow, J.W. Honeycutt, T.P. Humphreys, G. A. Rozgonyi, and R. J. Nemanich (Mater. Res. Soc. Symp. Proc. 181, Pittsburgh, PA, 1990), p. 595.

  4. I. Engström and B. Loennberg, J. Appl. Phys. 63, 4476 (1988).

    Article  Google Scholar 

  5. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (John Wiley-Interscience, New York, 1972).

    Google Scholar 

  6. K. Pomoni and J. Salmi, J. Phys. D (Appl. Phys.) 24, 727 (1991).

    Article  CAS  Google Scholar 

  7. M. Setton and J.v.d. Speigel, J. Appl. Phys. 70, 193 (1991).

    Article  CAS  Google Scholar 

  8. K. Holloway and R. Sinclair, J. Appl. Phys. 61, 1359 (1987).

    Article  CAS  Google Scholar 

  9. R. Beyers and R. Sinclair, J. Appl. Phys. 57, 5240 (1985).

    Article  CAS  Google Scholar 

  10. R. Butz, G.W. Rubloff, T.Y. Tan, and P.S. Ho, Phys. Rev. B 30, 5421 (1984).

    Article  CAS  Google Scholar 

  11. I. J. M. Raaijmakers, A. H. Reader, and P.H. Oosting, J. Appl. Phys. 63, 2790 (1988).

    Article  CAS  Google Scholar 

  12. X. Wallart, J. P. Nys, and G. Dalmai, Appl. Surf. Sci. 38, 49 (1989).

    Article  CAS  Google Scholar 

  13. H.J.W, van Houtum, I.J.M.M. Raaijmakers, and T.J.M. Menting, J. Appl. Phys. 61, 4269 (1987).

    Google Scholar 

  14. T. Yamauchi, S. Zaima, K. Mizuno, H. Kitamura, Y. Koide, and Y. Yasuda, Appl. Phys. Lett. 57, 1105 (1990).

    Article  CAS  Google Scholar 

  15. H.C. Cheng and L.J. Chen, Appl. Phys. Lett. 46, 562 (1985).

    Article  CAS  Google Scholar 

  16. J.Y. Cheng and L.J. Chen, J. Appl. Phys. 68, 4002 (1990).

    Article  CAS  Google Scholar 

  17. T. Yamauchi, S. Zaima, K. Mizuno, H. Kitamura, Y. Koide, and Y. Yasuda, J. Appl. Phys. 69, 7050 (1991).

    Article  CAS  Google Scholar 

  18. C.A. Sukow, M.S. Thesis, North Carolina State University (1992).

  19. P. Revesz, L. R. Zheng, L. S. Hung, and J. W. Mayer, Appl. Phys. Lett. 48, 1591 (1986).

    Article  CAS  Google Scholar 

  20. A. Gupta, G. A. West, and K. W. Beeson, J. Appl. Phys. 58, 3573 (1985).

    Article  CAS  Google Scholar 

  21. R. Burmester, H. Joswig, and A. Mitwalsky, in 19th European Solid State Device Research Conference, edited by A. Heuberger, H. Ryssel, and P. Lange (Springer-Verlag, Berlin, 1989), p. 233.

    Google Scholar 

  22. Y. Omura, H. Inokawa, and K. Izumi, J. Mater. Res. 6, 1238 (1991).

    Article  CAS  Google Scholar 

  23. H. Kuwano, J. R. Phillips, and J. W. Mayer, Appl. Phys. Lett. 56, 440 (1990).

    Article  CAS  Google Scholar 

  24. L.J. Chen, I.W. Wu, J.J. Chu, and C.W. Nieh, J. Appl. Phys. 63, 2778 (1988).

    Article  CAS  Google Scholar 

  25. A. Catana, M. Heintze, F. Lévy, P. E. Schmid, and P. Stadelmann, Semiconductor Silicon, edited by G. C. Harbeke and M. J. Schults (Springer Series in Materials Science, Berlin, 1989), Vol. 13, p. 276.

  26. A. Catana, P. E. Schmid, M. Heintze, and F. Lévy, J. Appl. Phys. 67, 1820 (1990).

    Article  CAS  Google Scholar 

  27. S. Mu, J. Lue, and I. Wu, J. Phys. Chem. Solids 49, 1389 (1988).

    Article  CAS  Google Scholar 

  28. A. Bourret, F.M. d’Heurle, F.K. LeGoues, and A. Charai, J. Appl. Phys. 67, 241 (1990).

    Article  CAS  Google Scholar 

  29. A. P. Botha and R. Pretorius, in Thin Films and Interfaces, edited by P. S. Ho and K. N. Tu (Mater. Res. Soc. Symp. Proc. 10, North Holland, Amsterdam, 1982), p. 129.

  30. H. Jeon and R.J. Nemanich, Thin Solid Films 184, 357 (1990).

    Article  CAS  Google Scholar 

  31. R.J. Nemanich, R. Fiordalice, and H. Jeon, IEEE J. Quant. Elect. 25, 997 (1989).

    Article  CAS  Google Scholar 

  32. T. P. Nolan, R. Sinclair, and R. Beyers, J. Appl. Phys. 71, 720 (1992).

    Article  CAS  Google Scholar 

  33. F.M. d’Heurle, J. Mater. Res. 3, 167 (1988).

    Article  CAS  Google Scholar 

  34. J. J. Chu, I. C. Wu, and L. J. Chen, J. Appl. Phys. 61, 549 (1987).

    Article  CAS  Google Scholar 

  35. N. K. Adam, The Physics and Chemistry of Surfaces (Dover, New York, 1968).

    Google Scholar 

  36. H. Jeon, Thesis, North Carolina State University (1990).

  37. Y. Igarashi, T. Yamaji, S. Nishikawa, and S. Ohno, Appl. Surf. Sci. 41–42, 282 (1989).

    Google Scholar 

  38. C.A. Pico and M.G. Lagally, J. Appl. Phys. 64, 4957 (1988).

    Article  CAS  Google Scholar 

  39. J. C. Russ, Computer-Assisted Microscopy: The Measurement and Analysis of Images (Plenum, New York, 1990).

    Book  Google Scholar 

  40. T. Takai, T. Halicioglu, and W.A. Tiller, Surf. Sci. 104, 341 (1985).

    Article  Google Scholar 

  41. B. L. Kropman, C.A. Sukow, and R.J. Nemanich, in Evolution of Surface and Thin Film Microstructure, edited by H. A. Atwater, E. H. Chason, M. L. Grabow, and M. G. Lagally (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), pp. 589–592.

  42. K.H. Kim, J.L. Jeoung, D.J. Seo, C.K. Choi, S.R. Hong, D.K. Jeoung, S.C. Kim, J.Y. Lee, and M.A. Nicolet, J. Appl. Phys. 71, 3812 (1992).

    Article  CAS  Google Scholar 

  43. M. S. Fung, H. C. Cheng, and L. J. Chen, Appl. Phys. Lett. 47, 1312 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukow, C.A., Nemanich, R.J. Morphology of TiSi2 and ZrSi2 on Si(100) and (111) surfaces. Journal of Materials Research 9, 1214–1227 (1994). https://doi.org/10.1557/JMR.1994.1214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1214

Navigation