Skip to main content
Log in

Competition between strain and interface energy during epitaxial grain growth in Ag films on Ni(001)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Epitaxial Grain Growth (EGG) is an orientation-selective process that can occur in polycrystalline thin films on single crystal substrates. EGG is driven by minimization of crystallographically anisotropic free energies. One common driving force for EGG is the reduction of the film/substrate interfacial energy. We have carried out experiments on polycrystalline Ag films on Ni(001) substrates. The orientation dependence of the Ag/Ni interfacial energy has been previously calculated using the embedded atom method. Under some conditions, EGG experiments lead to the (111) orientations calculated to be interface- and surface-energy-minimizing. However, when Ag films are deposited on Ni(001) at low temperature, EGG experiments consistently find that (111) oriented grains are consumed by grains with (001) orientations predicted to have much higher interface and surface energy. The large elastic anisotropy of Ag can account for this discrepancy. Strain energy minimization favors growth of (001) grains and can supersede minimization of interfacial energy if sufficient strain is present and if the film is initially unable to relieve the strain by plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.V. Thompson, J. Appl. Phys. 58, 763 (1985).

    Article  CAS  Google Scholar 

  2. C.V. Thompson, Acta Metall. 36, 2929 (1988).

    Article  CAS  Google Scholar 

  3. C. V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  4. J. E. Palmer, C. V. Thompson, and H. I. Smith, J. Appl. Phys. 62, 2492 (1987).

    Article  CAS  Google Scholar 

  5. H.J. Kim and C.V. Thompson, J. Appl. Phys. 67, 757 (1990).

    Article  CAS  Google Scholar 

  6. C. C. Wong, H. I. Smith, and C. V. Thompson, Appl. Phys. Lett. 48, 335 (1986).

    Article  CAS  Google Scholar 

  7. C. V. Thompson and H. I. Smith, Appl. Phys. Lett. 44, 603 (1984).

    Article  CAS  Google Scholar 

  8. C. V. Thompson, J. A. Floro, and H. I. Smith, J. Appl. Phys. 67, 4099 (1990).

    Article  CAS  Google Scholar 

  9. J.A. Floro and C.V. Thompson, in Thin Film Structures and Phase Stability, edited by B.M. Clemens and W. L. Johnson (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), pp. 273–278.

  10. J.A. Floro and C.V. Thompson, Acta Metall. Mater. 41, 1137 (1993).

    Article  Google Scholar 

  11. Y. Gao, S.A. Dregia, and P.G. Shewmon, Acta Metall. 37, 1627 (1989).

    Article  CAS  Google Scholar 

  12. Y. Gao, S. A. Dregia, and P. G. Shewmon, Acta Metall. 37, 3165 (1989).

    Article  CAS  Google Scholar 

  13. I. M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  14. M. Hillert, Acta Metall. 13, 227 (1965).

    Article  CAS  Google Scholar 

  15. L. G. Schultz, J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  16. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 295.

    Google Scholar 

  17. C.S. Bassett and T. B. Massalski, Structure of Metals, 3rd ed. (McGraw-Hill, New York, 1966).

    Google Scholar 

  18. D.W. Pashley and M.J. Stowell, Philos. Mag. 8, 1605 (1963).

    Article  CAS  Google Scholar 

  19. J.G. Allpress and J.V. Sanders, Philos. Mag. 14, 937 (1966).

    Article  CAS  Google Scholar 

  20. C.V. Thompson, H.J. Frost, and F. Spaepen, Acta Metall. 35, 887 (1987).

    Article  CAS  Google Scholar 

  21. D. J. Srolovitz, G.S. Grest, and M.P. Anderson, Acta Metall. 32, 2233 (1985).

    Article  Google Scholar 

  22. J. P. Hirth and J. Lothe, Theory of Dislocations (John Wiley, New York, 1982).

    Google Scholar 

  23. W.D. Nix, Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  24. “Thermal Expansion—Metallic Elements and Alloys,” in Therophysical Properties of Matter (IFI/Plenum, New York), Vol. 12.

  25. Handbook of Precious Metals, edited by E. M. Savitskii (Hemisphere Publishing Corp., New York), p. 127.

  26. Metals Handbook, 10th ed. (American Society for Metals, Metals Park, OH), Vol. 2, pp. 1143, 1156.

  27. R. Venkatraman and J. C. Bravman, J. Mater. Res. 7, 2040 (1992).

    Article  CAS  Google Scholar 

  28. L. B. Freund, J. Appl. Mech. 54, 553 (1987).

    Article  CAS  Google Scholar 

  29. C.V. Thompson, J. Mater. Res. 8, 237 (1993).

    Article  Google Scholar 

  30. N. J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  31. J.E. Sanchez, Jr. and E. Arzt, Scripta Metall. Mater. 27, 285 (1992).

    Article  CAS  Google Scholar 

  32. R. Balluffl, private communication.

  33. R.J. Matyi, J.W. Lee, and H.F. Schaake, J. Elec. Mater. 17, 87 (1988).

    Article  Google Scholar 

  34. R. Beanland, Philos. Mag. A 67, 585 (1993).

    Article  Google Scholar 

  35. R. Du and C. P. Flynn, J. Phys. Condens. Matter 2, 1335 (1990).

    Article  Google Scholar 

  36. W. A. Jesser, Phys. Status Solidi A 20, 63 (1973).

    Article  Google Scholar 

  37. B. Dodson, D.R. Myers, A. K. Datye, V.S. Kaushik, D.L. Kendall, and B. Martinez-Tovar, Phys. Rev. Lett. 61, 2681 (1988).

    Article  CAS  Google Scholar 

  38. S. Mader, R. Feder, and P. Chaudhari, Thin Solid Films 14, 63 (1972).

    Article  CAS  Google Scholar 

  39. J. Hornstra, Physica 26, 198 (1960).

    Article  CAS  Google Scholar 

  40. J. A. Floro, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floro, J.A., Thompson, C.V., Carel, R. et al. Competition between strain and interface energy during epitaxial grain growth in Ag films on Ni(001). Journal of Materials Research 9, 2411–2424 (1994). https://doi.org/10.1557/JMR.1994.2411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2411

Navigation