Skip to main content
Log in

Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nucleation, growth, and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, and excess lead addition are reported. The use of post-pyrolysis oxygen anneals at temperatures in the regime of 350–450 °C was found to strongly affect the kinetics of subsequent amorphous-pyrochlore-perovskite crystallization by rapid thermal annealing. The use of such post-pyrolysis anneals allowed films of reproducible microstructure and textures [both (100) and (111)] to be prepared by rapid thermal annealing. It is proposed that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. Such changes in the Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Klee, A. De Veirman, P. Van de Weijer, U. Mackens, and H. Van Hal, Philips Res. Rep. 47, 263 (1993).

    CAS  Google Scholar 

  2. S. Hirano, T. Yugo, K. Kikuta, Y. Araki, M. Saitoh, and S. Ogasahara, J. Am. Ceram. Soc. 75 (10), 2785 (1992).

    Article  CAS  Google Scholar 

  3. G. J. M. Dormans, M. de Keijser, P. J. van Veldhoven, D. M. Frigo, J. E. Holewijn, G. P. M. van Mier, and C. J. Smit, Chem. Mater. 5, 448 (1993).

    Article  CAS  Google Scholar 

  4. R. Braukhaus, H. Huber, D. Pitzer, and W. Wersing, Ferroelectrics 127, 137 (1992).

    Article  Google Scholar 

  5. G.R. Fox and S.B. Krupanidhi, J. Mater. Res. 9, 699 (1994).

    Article  CAS  Google Scholar 

  6. I. M. Reaney, K. G. Brooks, R. Klissurska, Cz. Pawlaczyk, and N. Setter, J. Am. Ceram. Soc. 77, 1209 (1994).

    Article  CAS  Google Scholar 

  7. G. A. C. M. Spierings, J. B. A. van Zon, M. Klee, and P. K. Larsen, Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 9–11, 1992.

  8. K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish, and R. G. Elliman, J. Appl. Phys. 75 (1), 232 (1994).

    Article  CAS  Google Scholar 

  9. S. Chen and I. Chen, IMF Proa, August (1993).

  10. V. Chikarmane, C. Sudhama, J. Kim, J. Lee, and A. Tasch, Appl. Phys. Lett. 59 (22), 2850 (1991).

    Article  CAS  Google Scholar 

  11. G. A. C. M. Spierings, M.J.E. Ulenaers, G.L. M. Kampschoer, H.A.M. van Hal, and P.K. Larsen, J. Appl. Phys. 70 (4), 2290 (1991).

    Article  CAS  Google Scholar 

  12. D.F. Ryder, Jr. and N.K. Raman, J. Elec. Mater. 21 (10), 971 (1992).

    Article  CAS  Google Scholar 

  13. G.R. Fox, S.B. Krupanidhi, K.L. More, and L.F. Allard, J. Mater. Res. 7, 3039 (1992).

    Article  CAS  Google Scholar 

  14. E. M. Griswold, M. Sayer, and D. T. Amm, Can. J. Phys. 69, 260 (1991).

    Article  CAS  Google Scholar 

  15. B.A. Tuttle, D.H. Doughty, R.W. Schwartz, T.J. Garino, S.L. Martinez, R. G. Tissot, and W. F. Hammetter, Ceram. Trans. (Mater. Processes Microelectron Syst.) 15, 179–191 (1990).

    CAS  Google Scholar 

  16. M. Huffman and P.J. Schuele, Ferroelectrics 143, 251 (1993).

    Article  CAS  Google Scholar 

  17. M. Klee and P. Larsen, Ferroelectrics 133, 91 (1992).

    Article  CAS  Google Scholar 

  18. R.A. Lipeles, D.J. Coleman, and M.S. Leung, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 38 (6), 684 (1991).

    Article  CAS  Google Scholar 

  19. N. Tohge, S. Takahashi, and T. Minami, J. Am. Ceram. Soc. 74 (1), 67 (1991).

    Article  CAS  Google Scholar 

  20. T.W. Dekleva, J.M. Hayes, L.E. Cross, and G.L. Geoffrey, J. Am. Ceram. Soc. 71 (5), C280 (1988).

    Article  CAS  Google Scholar 

  21. R. A. Lipeles, D. J. Coleman, and M. S. Leung, in Better Ceramics through Chemistry II, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 665.

  22. L. Bursill and K. Brooks, J. Appl. Phys. (1994, in press).

  23. K.D. Budd, S.K Dey, and D.A. Paine, Brit. Ceram. Proc. 36, 107 (1985).

    CAS  Google Scholar 

  24. I. M. Reaney, D.J. Barber, and R. Watton, J. Mater. Sci.: Mater. Electron. 3, 51 (1992).

    CAS  Google Scholar 

  25. B.A. Tuttle, R.W. Schwartz, D.H. Doughty, and J.A. Voigt, in Ferroelectric Thin Films, edited by E. R. Meyers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 159.

  26. C. Sorrell, J. Am. Ceram. Soc. 56 (12), 613 (1973).

    Article  CAS  Google Scholar 

  27. H. Magaw, Ferroelectricity in Crystals (Methuan & Co., Ltd., London, 1957).

    Google Scholar 

  28. K. Brooks, T. Maeder, and I. Reaney, unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from School of Physics, The University of Melbourne, Parkville, 3052, Victoria, Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, K.G., Reaney, I.M., Klissurska, R. et al. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates. Journal of Materials Research 9, 2540–2553 (1994). https://doi.org/10.1557/JMR.1994.2540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2540

Navigation