Skip to main content
Log in

Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel and easy route for preparing submicrometer particles of zinc oxide, involving hydrolysis of zinc salt in a polyol medium, is proposed. Zinc acetate dihydrate and diethyleneglycol appear to be the best candidates for obtaining a high yield of particles with well-defined morphological characteristics. Monodisperse spherical particles in the submicrometer range (0.2−0.4 μm) have been obtained for a salt concentration less than 0.1 mol 1−1. The particle size depends mainly on the heating rate. The particles are microporous (surface area: 80 m2 g−1) and are formed by aggregation of small crystallites (10 nm). Calcination at moderate temperature drastically reduces this porosity without significant interparticle sintering. At higher concentration, no aggregation occurs and tiny single crystallite particles are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Q. Liu, O. Sakurai, N. Mizutani, and M. Kato, J. Mater. Sci. 21, 3698 (1986).

    Article  CAS  Google Scholar 

  2. S. M. Haile, D. W. Johnson, Jr., G. H. Wiseman, and H. K. Bowen, J. Am. Ceram. Soc. 72, 2004 (1989).

    Article  CAS  Google Scholar 

  3. M. Andrés Vergés and M. Martinez-Gallego, J. Mater. Sci. 27, 3756 (1992).

    Article  Google Scholar 

  4. D. W. Sproson, G. L. Messing, and T. J. Gardner, Ceram. Int. 12, 3 (1986).

    Article  CAS  Google Scholar 

  5. R. H. Heistand II and Y. H. Chia, in Better Ceramics Through Chemistry II, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 93.

    Google Scholar 

  6. M. Andrés Vergés, A. Mifsud, and C. J. Serna, J. Chem. Soc. Faraday Trans. 86, 959 (1990).

    Article  Google Scholar 

  7. R. S. Sapieszko and E. Matijević, Corrosion 36, 522 (1980).

    Article  CAS  Google Scholar 

  8. M. Castellano and E. Matijević, Chem. Mater. 1, 78 (1989).

    Article  CAS  Google Scholar 

  9. K. Kamata, H. Hosono, Y. Maeda, and K. Miyokawa, Chem. Lett., 2021 (1984).

    Google Scholar 

  10. F. Fiévet, J. P. Lagier, and M. Figlarz, MRS Bull. XIV, 29 (1989).

    Article  Google Scholar 

  11. F. Fiévet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, Solid State Ionics 32/33, 198 (1989).

    Article  Google Scholar 

  12. M. Figlarz, C. Ducamp-Sanguesa, F. Fiévet, and J. P. Lagier, in Advances in Powder Metallurgy and Particulate Materials, edited by Metal Powder Industries Federation, Princeton, NJ (P. M. World Congress Proceedings, San Francisco, CA, 1992), Vol. 1, pp. 179–192.

  13. H. Kominami, M. Inoue, and T. Inui, Catal. Today 16, 309 (1993).

    Article  CAS  Google Scholar 

  14. E. Matijević and S. Cimas, Colloid Polym. Sci. 265, 155 (1987).

    Article  Google Scholar 

  15. X. Li, B. K. Xu, Z. C. Wang, F. Chi, and M. Y. Zhao, J. Mater. Sci. Lett. 11, 1476 (1992).

    Article  CAS  Google Scholar 

  16. I. R. Collins and S. E. Taylor, J. Mater. Chem. 2, 1277 (1992).

    Article  CAS  Google Scholar 

  17. E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 264.

    Google Scholar 

  18. E. Matijević, Prog. Colloid Polym. Sci. 61, 24 (1976).

    Article  Google Scholar 

  19. E. Matijević, Annu. Rev. Mater. Sci. 15, 483 (1985).

    Article  Google Scholar 

  20. E. Matijević, Langmuir 2, 12 (1986).

    Article  Google Scholar 

  21. E. Matijević, Chem. Mater. 5, 412 (1993).

    Article  Google Scholar 

  22. J. Livage, C. Sanchez, M. Henry, and S. Doeuff, Solid State Ionics 32/33, 633 (1989).

    Article  Google Scholar 

  23. E. Matijević, J. Colloid Interface Sci. 58, 374 (1977).

    Article  Google Scholar 

  24. E. Matijević, Pure Appl. Chem. 50, 1193 (1978).

    Article  Google Scholar 

  25. T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987).

    Article  CAS  Google Scholar 

  26. H. K. Bowen, Meter. Sci. Eng. 44, 1 (1980).

    Article  CAS  Google Scholar 

  27. M. Ocaña and E. Matijević, J. Mater. Res. 5, 1083 (1990).

    Article  Google Scholar 

  28. W. P. Hsu, L. Rönnquist, and E. Matijević, Langmuir 4, 31 (1988).

    Article  CAS  Google Scholar 

  29. T. C. Pluym, S. W. Lyons, Q. H. Powell, A. S. Gurav, T. T. Kodas, L. M. Wang, and H. D. Glicksman, Mater. Res. Bull. XXVIII, 369 (1993).

    Article  Google Scholar 

  30. L. H. Edelson and A. M. Glaeser, J. Am. Ceram. Soc. 71, 225 (1988).

    Article  CAS  Google Scholar 

  31. C. J. Brinker and G. W. Scherer, Sol-gel Science (Academic Press, New York, 1990), pp. 275–284.

    Google Scholar 

  32. J. Livage, J. Solid State Chem. 64, 322 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jézéquel, D., Guenot, J., Jouini, N. et al. Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. Journal of Materials Research 10, 77–83 (1995). https://doi.org/10.1557/JMR.1995.0077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0077

Navigation