Skip to main content
Log in

A combustion synthesis process for synthesizing nanocrystalline zirconia powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Materials with nanocrystalline features are expected to have improved or unique properties when compared to those of conventional materials. Methods for the practical and economical production of nanoparticles in large quantities are not presently available. A method based on combustion synthesis for preparing nanocrystalline powders was investigated in this work. Yttria-doped zirconia powders with an average crystallite size of 10 nm were synthesized. The characteristics of the powder (e.g., surface area and phase content) were found to depend strongly on the fuel content in the starting mixture and on the ignition temperature used in the process. The method is expected to be suitable for commercial fabrication of nanocrystalline multicomponent oxide ceramic powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223–315 (1989).

    Article  CAS  Google Scholar 

  2. B.H. Kear, L.E. Cross, J.E. Keem, R.W. Siegel, F. Spaipen, K. C. Taylor, E. L. Thomas, and K. N. Tu, Research Opportunities for Materials with Ultrafine Microstructures, National Materials Advisory Board-454 (National Academy Press, Washington, DC, 1989).

    Google Scholar 

  3. Multicomponent Ultrafine Microstructures, edited by L.E. Mc-Candlish, D.E. Polk, R.W. Siegel, and B.H. Kear (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989).

  4. I.A. Aksay, C. Han, G.D. Maupin, C.B. Martin, R.P. Kurosky, and G.C. Stangle, US Patent No. 5,061,682, Oct. 1991.

  5. P. Ravindranathan and K.C. Patil, Am. Ceram. Soc. Bull. 66 (4), 688–692 (1987).

    CAS  Google Scholar 

  6. J.J. Kingsley and K.C. Patil, Mater. Lett. 6 (11–12), 427–432 (1988).

    Article  CAS  Google Scholar 

  7. L. A. Chick, J. L. Bates, I. R. Peterson, and H.E. Kissinger, Proc. 1st Int. Symp. on Solid Oxide Fuel Cells, edited by S. C. Singhal (The Electrochemical Society, Pennington, NJ, 1989), pp. 170–187.

    Google Scholar 

  8. K. Kourtakis, M. Robbins, P. K. Gallagher, and T. Tiefel, J. Mater. Res. 4 1289–1291 (1989).

    Article  CAS  Google Scholar 

  9. C. Chambers and A. K. Holliday, Modern Inorganic Chemistry (Butterworth & Co., Ltd., London, 1975), pp. 242–243.

    Google Scholar 

  10. H. Klug and L. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1962).

    Google Scholar 

  11. M.W. Beckstead, R.L. Derr, and C.F. Price, Proc. 13th Symp. (Int.) on Combustion (The Combustion Institute, Pittsburgh, PA, 1971).

    Google Scholar 

  12. Phase Diagrams for Ceramists, edited by R. S. Roth, J. R. Dennis, and H. F. McMurdie (The American Ceramic Society, Westerville, OH, 1987), Vol. VI.

  13. W. D. Kingery, H. K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), pp. 182–183.

    Google Scholar 

  14. S. Sōmiya, M. Yoshimura, Z. Nakai, K. Hishinuma, and T. Kumaki, in Advances in Ceramics, Ceramic Powder Science, edited by G. L. Messing, K. S. Mazdiyasni, J. W. McCauley, and R.A. Haber (The American Ceramic Society, Westerville, OH, 1987), Vol. 21, pp. 43–56.

  15. C. M. Foster, G. R. Bai, J. C. Parker, and M. N. Ali, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J. C. Parker, and G.J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), pp. 61–66.

  16. Y. Zhang and G.C. Stangle, J. Mater. Res. 8, 1703–1711 (1993).

    Article  CAS  Google Scholar 

  17. W. B. Russel, The Dynamics of Colloidal Systems (The University of Wisconsin Press, 1987), pp. 39–42.

  18. K. R. Venkatachari, D. Huang, S. P. Ostrander, W. A. Schulze, and G.C. Stangle, J. Mater. Res. 10, 756–761 (1995).

    Article  CAS  Google Scholar 

  19. M.M. A. Sekar and K.C. Patil, J. Mater. Chem. 2 (7), 739–743 (1992).

    Article  CAS  Google Scholar 

  20. K. Masters, Spray Drying Handbook (John Wiley & Sons, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatachari, K.R., Huang, D., Ostrander, S.P. et al. A combustion synthesis process for synthesizing nanocrystalline zirconia powders. Journal of Materials Research 10, 748–755 (1995). https://doi.org/10.1557/JMR.1995.0748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0748

Navigation