Skip to main content
Log in

The synthesis and characterization of solid-state materials produced by high shear-hydrodynamic cavitation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new method for the synthesis of complex metal oxides, based on hydrodynamic cavitation, was used to prepare pure phase, nanostructured solid-state materials. The continuous process afforded a wide variety of metal oxides in grain sizes of 1-10 nm. Catalysts, ceramics, superconductors, piezoelectrics, and zeolites were prepared by cavitational synthesis. The method enabled the synthesis of fine particles of metals and metal oxides supported on high surface area supports such as silica, and the synthesis of fine particles of cubic zirconia without ion modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Moser, U.S. Patent 5 417956, assigned to Worcester Polytechnic Institute (May 23, 1995).

    Google Scholar 

  2. U.S. Patents 4533 254 and 4 908 154; manufactured by Microfluidics Corporation International, Newton, MA.

  3. K. S. Suslick, Science 247, 1373 (1990).

    Article  Google Scholar 

  4. H. M. Cheung, A. Bhatnagar, and G. Jansen, Environ. Sci. Technol. 25, 1510 (1991).

    Article  CAS  Google Scholar 

  5. F. R. Young, Cavitation (McGraw-Hill, New York, 1989).

    Google Scholar 

  6. T. Prasada and P. Menon, J. Catalysis 51, 64–71 (1978).

    Article  Google Scholar 

  7. C. J. Michaels, U. Chowdhry, W. T. A. Harrison, and A. W. Sleight, in Solid State Chemistry in Catalysis, edited by R. K. Grasselli and J. F. Brazdil, ACS Symposium Series 79, 103 (1985).

    Article  Google Scholar 

  8. R. K. Grasselli, G. H. Heights, and J. L. Callahan, U.S. Patent 3414 631 (1968).

  9. R. K. Grasselli, G. H. Heights, and H. F. Hardman, U.S. Patent 3 642 930 (1972).

  10. J. D. Idol, Jr., U.S. Patent 2904 580 (1959).

  11. J. D. Burrington and R. K. Grasselli, J. Catalysis 59, 79 (1979).

    Article  CAS  Google Scholar 

  12. M. LaLacono, T. Notermann, and G. Keulks, J. Catalysis 40, 19–33 (1975).

    Article  Google Scholar 

  13. G. W. Keulks, J. L. Hall, C. Daniel, and K. Suzuki, J. Catalysis 34, 79 (1974).

    Article  CAS  Google Scholar 

  14. J. C. Volta and J. L. Portefaix, Rev. Appl. Catalysis 18, 1 (1985).

    Article  CAS  Google Scholar 

  15. A. N. Desikan and S. T. Oyama, in ACS Symposium Series 482, 260 (1992), edited by D. J. Dwyer and F. M. Huffmann.

  16. P. D. Battle, T. C. Gibb, and P. Lightfoot, J. Solid State Chem. 84, 271 (1990).

    Article  CAS  Google Scholar 

  17. A. C. Larson and R. B. von Dreele, Los Alamos National Laboratory Report, Report No. LA-UR-86-748 (1987).

  18. R. W. Siegel, Ann. Rev. Mater. Sci. 21, 559–578 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, W.R., Marshik, B.J., Kingsley, J. et al. The synthesis and characterization of solid-state materials produced by high shear-hydrodynamic cavitation. Journal of Materials Research 10, 2322–2335 (1995). https://doi.org/10.1557/JMR.1995.2322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2322

Navigation