Skip to main content
Log in

Growth defects in GaN films on sapphire: The probable origin of threading dislocations

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single crystal GaN films with a wurtzite structure were grown on the basal plane of sapphire. A high density of threading dislocations parallel to the c-axis crossed the film from the interface to the film surface. They were found to have a predominantly edge character with a \({\textstyle{1 \over 3}}\langle 11\overline 2 0\rangle \) Burgers vector. In addition, dislocation hal-loops, elongated along the c-axis of GaN, were also found on the prism planes. These dislocations had a mostly screw character with a [0001] Burgers vector. Substrate surface steps with a height of \({\textstyle{1 \over 6}}{c_{{\rm{A}}{{\rm{|}}_2}{{\rm{O}}_3}}}\) were found to be accommodated by localized elastic bending of GaN (0001)GaN planes in the vicinity of the film/substrate interface. Observations show that the region of the film, with a thickness of ∼100 nm, adjacent to the interface is highly defective. This region is thought to correspond to the low-temperature GaN “buffer” layer which is initially grown on the sapphire substrate. Based on the experimental observations, a model for the formation of the majority threading dislocations in the film is proposed. The analysis of the results leads us to conclude that the film is under residual biaxial compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Sasaki and S. Zembutsu, J. Appl. Phys. 61, 2533 (1987).

    Article  CAS  Google Scholar 

  2. M. J. Paisley, Z. Sitar, J.B. Posthill, and R. F. Davis, J. Vac. Sci. Technol. 7, 701 (1989).

    Article  CAS  Google Scholar 

  3. Z. Sitar, M. J. Paisley, B. Yan, and R. F. Davis, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), pp. 537–541.

  4. S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237–1266 (1992).

    Article  CAS  Google Scholar 

  5. R. F. Davis, Proc. IEEE 79, 702–712 (1991).

    Article  CAS  Google Scholar 

  6. T. P. Humphreys, C. A. Sukow, R. J. Nemanich, J.B. Posthill, R. A. Rudder, S. V. Hattangady, and R. J. Markunas, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), pp. 531–536.

  7. K. Kuwano, T. Shiraishi, A. Koga, K. Oki, K. Hiramatsu, H. Amano, K. Itoh, and I. Akasaki, J. Cryst. Growth 115, 381–387 (1991).

    Article  CAS  Google Scholar 

  8. F. A. Ponce, J.S. Major, Jr., W. E. Plano, and D. F. Welch, Appl. Phys. Lett. 65, 2302 (1994).

    Article  CAS  Google Scholar 

  9. S. N. Basu, T. Lei, and T. D. Moustakas, J. Mater. Res. 9, 2370–2378 (1994).

    Article  CAS  Google Scholar 

  10. W. Qian, M. Skowronski, M. De Graaf, K. Doverspike, L. B. Rowland, and D. K. Gaskill, Appl. Phys. Lett. 66, 1252 (1995).

    Article  CAS  Google Scholar 

  11. D. Cherns and A. R. Preston, in Proc. XIth Int. Congr. on Electron Microscopy, Kyoto, p. 721 (1986).

  12. J. Wang, J. W. Steeds, and D. A. Woolf, Philos. Mag. A 65, 829–839 (1992).

    Article  CAS  Google Scholar 

  13. X. J. Ning and P. Pirouz, in Defect-Interface Interactions, edited by E. P. Kvam, A. H. King, M. J. Mills, T. D. Sands, and V. Vitek (Mater. Res. Soc. Symp. Proc. 319, Pittsburgh, PA, 1994), pp. 441–456.

  14. X. J. Ning and P. Pirouz, J. Mater. Res. 11 (4) (1996, in press).

  15. C. T. Chou, A. R. Preston, and J.W. Steeds, Philos. Mag. A 65, 863–888 (1992).

    Article  Google Scholar 

  16. M. Asif Khan, J. N. Kuznia, J. M. Van Hove, D. T. Olson, S. Krishnankutty, and R. M. Kolbas, Appl. Phys. Lett. 58, 526 (1991).

    Article  Google Scholar 

  17. K. Marukawa, Philos. Mag. A 40, 303 (1979).

    Article  CAS  Google Scholar 

  18. I. F. Chetverikova, M. V. Chukichev, and L. N. Rastorguev, Inorg. Mater. 22, 53–56 (1986).

    Google Scholar 

  19. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1982).

    Google Scholar 

  20. H. P. Maruska and J. J. Tietjien, Appl. Phys. Lett. 15, 327 (1969).

    Article  CAS  Google Scholar 

  21. Y. Ikuhara, P. Pirouz, A. H. Heuer. S. Yadavalli, and C. P. Flynn, Philos. Mag. A 70, 75–97 (1994).

    Article  CAS  Google Scholar 

  22. J. W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  CAS  Google Scholar 

  23. K. Hiramatsu, T. Detchprohm, and I. Akasaki, Jpn. J. Appl. Phys. 32, 1528–1533 (1993).

    Article  CAS  Google Scholar 

  24. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209 (1989).

    Article  CAS  Google Scholar 

  25. P. Pirouz and J. W. Yang, Ultramicroscopy 51, 189–214 (1993).

    Article  CAS  Google Scholar 

  26. K. P. D. Lagerlöf, Ph.D. Thesis, Case Western Reserve University (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, X.J., Chien, F.R., Pirouz, P. et al. Growth defects in GaN films on sapphire: The probable origin of threading dislocations. Journal of Materials Research 11, 580–592 (1996). https://doi.org/10.1557/JMR.1996.0071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0071

Navigation