Skip to main content
Log in

Thermodynamic stability of binary oxides in contact with silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using tabulated thermodynamic data, a comprehensive investigation of the thermo-dynamic stability of binary oxides in contact with silicon at 1000 K was conducted. Reactions between silicon and each binary oxide at 1000 K, including those involving ternary phases, were considered. Sufficient data exist to conclude that all binary oxides except the following are thermodynamically unstable in contact with silicon at 1000 K: Li2O, most of the alkaline earth oxides (BeO, MgO, CaO, and SrO), the column IIIB oxides (Sc2O3, Y2O3, and Re2O3, where Re is a rare earth), ThO2, UO2, ZrO2, HfO2, and Al2O3. Of these remaining oxides, sufficient data exist to conclude that BeO, MgO, and ZrO2 are thermodynamically stable in contact with silicon at 1000 K. Our results are consistent with reported investigations of silicon/binary oxide interfaces and identify candidate materials for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Fenner, A. M. Viano, D. K. Fork, G. A. N. Connell, J.B. Boyce, F. A. Ponce, and J.C. Tramontana, J. Appl. Phys. 69, 2176 (1991).

    Article  CAS  Google Scholar 

  2. C. Ziegler, F. Baudenbacher, H. Karl, H. Kinder, and W. Göpel, Fresenius J. Anal. Chem. 341, 308 (1991).

  3. Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui, Jpn. J. Appl. Phys. 33, 5172 (1994).

  4. M. Scheib, H. Goebel, L. Hofmann, B. Lengeler, H. Oechsner, and G. Zorn, Thin Solid Films 174, 5 (1989).

  5. J. K. G. Panitz and C. C. Hu, J. Vac. Sci. Technol. 16, 315 (1979).

  6. V. S. Dharmadhikari and W. W. Grannemann, J. Vac. Sci. Tech-nol. A 1, 483 (1983).

  7. A. Mogro-Campero, Supercond. Sci. Technol. 3, 155 (1990).

    Article  CAS  Google Scholar 

  8. D. K. Fork, in Pulsed Laser Deposition of Thin Films, edited by D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994), p. 393.

  9. E. J. Tarsa, K. L. McCormick, and J. S. Speck, in Epitaxial Oxide Thin Films and Heterostructures, edited by D. K. Fork, J.M. Philips, R. Ramesh, and R. M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 73.

  10. J. M. Phillips, MRS Bulletin 20, 35 (April 1995); J.M. Phillips, to be published in Processing and Properties of High Tc Superconductors, Volume 2: Thin Films, edited by S. Jin and D. K. Christen (World Scientific).

  11. M. Gurvitch and A. T. Fiory, Appl. Phys. Lett. 51, 1027 (1987).

  12. Q. X. Jia, K. L. Jiao, and W. A. Anderson, J. Appl. Phys. 70, 3364 (1991).

  13. R. Beyers, J. Appl. Phys. 56, 147 (1984).

    Article  CAS  Google Scholar 

  14. R. Beyers, R. Sinclair, and M. E. Thomas, J. Vac. Sci. Technol. B 2, 781 (1984).

  15. R. Beyers, K. B. Kim, and R. Sinclair, J. Appl. Phys. 61, 2195 (1987).

  16. R. Beyers, Ph.D. Thesis, Stanford University, 1989, pp. 38-76.

  17. K.J. Hubbard, B.S. Thesis, The Pennsylvania State University, 1993.

  18. Note that is the M-Si–O system contains more than one metal-silicide phase, there will be several phase diagram possibilities within the “no phase dominant” type; if the system contains no metal-silicide phases, there will not be a “no phase dominant” type.

  19. Of all the silicides, only the most silicon-rich (MSiz) lies on a tie-line between MSiz and SiO2 in all of the possible no phase dominant phase diagrams, making the preference of this tie-line or the one between silicon and MOx, Eq. (2), the critical test of metal oxide dominant versus no phase dominant.

  20. Of all the silicides, only the most silicon-rich (MSiz) lies on a tie-line between MSiz and MOx in all of the possible MOx dominant type (see Fig. 3) phase diagrams, making the preference of this tie-line or the one between silicon and MOw, Eq. (4), the critical test of MOx and MOw dominant versus MOx dominant.

  21. Note that if the M-Si–O system contains more than one metal-silicide phase, there will be several phase diagram possibilities within the MOx dominant type (see Fig. 3); if the system contains no metal-silicide phases, there will not be a MOx dominant type.

  22. These are the potential compatibility triangles that would accompany a tie-line between silicon and MOx. The ternary phases lying on these compatibility triangles are the only ones relevant to the existence of the tie-line being tested by Eqs. (5), (6), and (7).

  23. If a tie-line between silicon and MOx does not exist, a tie-line from the relevant MSixOy phase(s) that crosses the silicon-MOx tie-line position must exist. Such a tie-line must connect with either M or MSiz since a MSiz-SiO2 tie-line is known not to exist [in order to reach Eq. (5), DG had to be positive for Eq. (2)].

  24. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973).

  25. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Supplement (Springer-Verlag, Berlin, 1977).

  26. Thermodynamic Properties of Elements and Oxides (United States Bureau of Mines Bulletin 672, U.S. Government Printing Office, Washington, DC, 1982).

  27. G. M. Lukashenko, R.I. Polotskaya, and V. R. Sidorko, J. Alloys Compd. 179, 299 (1992).

  28. See, for example, R. E. Dickerson, Molecular Thermodynamics (Benjamin/Cummings, Menlo Park, 1969).

  29. Powder Diffraction File: Inorganic Phases (JCPDS International Centre for Diffraction Data, Swarthmore, PA, 1992).

  30. CRC Handbook of Chemistry and Physics, 71st ed. (CRC Press, Cleveland, OH, 1990/91).

  31. The Oxide Handbook, 2nd ed., edited by G. V. Samsonov (IFI/Plenum, New York, 1982).

  32. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7b, edited by K-H. Hellwege (Springer-Verlag, Berlin, 1975), p. 456.

  33. W.J. Kramers and J. R. Smith, Trans. Brit. Ceram. Soc. 56, 590 (1957).

  34. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 27g, edited by O. Madelung (Springer-Verlag, Berlin, 1992), p. 4.

  35. G. Brauer, H. Reuther, H. Walz, and K. H. Zapp, Z. Anorg. Allg. Chem. 369, 144 (1969).

  36. G. Natta and M. Strada, Gazzetta Chimica Italiana 58, 419 (1928).

  37. O. Muller and R. Roy, J. Less-Common Met. 16, 129 (1968).

  38. A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, Phys. Rev. Lett. 59, 213 (1987).

  39. E. I. Givargizov, Oriented Crystallization on Amorphous Substrates (Plenum Press, New York, 1991).

  40. R. P. Reade, P. Berdahl, R. E. Russo, and L. W. Schaper, Appl. Phys. Lett. 66, 2001 (1995).

  41. H.J. Goldschmidt, Interstitial Alloys (Plenum Press, New York, 1967), p. 296.

  42. H. Mori and H. Ishiwara, Jpn. J. Appl. Phys. 30, L1415 (1991); H. Ishiwara, H. Mori, K. Jyokyu, and S. Ueno, in Silicon Molecular Beam Epitaxy, edited by J. C. Bean, S. S. Iyer, and K. L. Wang (Mater. Res. Soc. Symp. Proc. 220, Pittsburgh, PA, 1991), p. 595; H. Ishiwara, N. Tsuji, H. Mori, and H. Nohira, Appl. Phys. Lett. 61, 1459 (1992).

  43. R.A. McKee, F.J. Walker, J.R. Conner, E.D. Specht, and D.E. Zelmon, Appl. Phys. Lett. 59, 782 (1991); R.A. McKee, F.J. Walker, J.R. Conner, and R. Raj, Appl. Phys. Lett. 63, 2818 (1993).

  44. H. Behner, J. Wecker, Th. Matthee, and K. Samwer, Surf. Interface Anal. 18, 685 (1992).

  45. Th. Matthee, J. Wecker, H. Behner, G. Friedl, O. Eibl, and K. Samwer, Appl. Phys. Lett. 61, 1240 (1992).

  46. A. Bardal, O. Eibl, Th. Matthee, G. Friedl, and J. Wecker, J. Mater. Res. 8, 2112 (1993).

  47. S.I. Krasnosvobodtsev and E.V. Pechen, Physica C 185-189, 2097 (1991).

  48. H. Behner, J. Wecker, and B. Heines, in High Tc Superconductor Thin Films, edited by L. Correra (North-Holland, Amsterdam, 1992), p. 623.

  49. E. V. Pechen, R. Schoenberger, B. Brunner, S. Ritzinger, K. F. Renk, M. V. Sidorov, and S. R. Oktyabrsky, J. Appl. Phys. 74, 3614 (1993).

  50. J. D. Filby and S. Nielsen, Br. J. Appl. Phys. 18, 1357 (1967).

  51. H. M. Manasevit, J. Cryst. Growth 22, 125 (1974).

    Article  CAS  Google Scholar 

  52. The growth of HfO2 layers on silicon has been reported by R. de Reus, F. W. Saris, G. J. van der Kolk, C. Witmer, B. Dam, D. H. A. Blank, D. J. Adelerhof, and J. Flokstra, Mater. Sci. Engr. B 7, 135 (1990). From RBS analyses, these researchers report HfO2 to be inert in contact with silicon at temperatures up to 1073 K. However, as in many reports of the deposition of oxides on silicon, no mention is given in this work of the method used to remove the native oxide from the (100) Si wafer prior to growth. It is thus likely that the stable interfaces studied were actually HfO2/SiO2/Si, which does not indicate whether the HfO2/Si interface is stable or unstable. It is for this same reason that other reports of the growth of binary oxides on silicon, in which the removal of the native oxide prior to growth is unclear, are not considered in our comparisons.

  53. R. Pretorius, J.M. Harris, and MA. Nicolet, Solid-State Electron. 21, 667 (1978).

  54. D. M. Brown, W. E. Engeler, M. Garfinkel, and P. V. Gray, Solid-State Electron. 11, 1105 (1968).

  55. S. P. Murarka, J. Vac. Sci. Technol. 17, 775 (1980); S. P. Murarka, Silicides for VLSI Applications (Academic Press, New York, 1983), pp. 138-140.

  56. K. E. Spear, P.W. Gilles, and H. Schafer, J. Less-Common Met. 14, 69 (1968).

  57. S. P. Murarka, D. B. Fraser, W. S. Lindenberger, and A. K. Sinha, J. Appl. Phys. 51, 3241 (1980).

  58. H. M. Manasevit, D. H. Forbes, and I. B. Cadoff, Trans. Metall. Soc. AIME 236, 275 (1966).

  59. D. K. Fork, F. A. Ponce, J. C. Tramontana, and T. H. Geballe, Appl. Phys. Lett. 58, 2294 (1991).

  60. P. Tiwari, S. Sharan, and J. Narayan, J. Appl. Phys. 69, 8358 (1991).

  61. S.H. Rou, T.M. Graettinger, A.F. Chow, C.N. Soble, II, D.J. Lichtenwalner, O. Auciello, and A. I. Kingon, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 81.

  62. G. Soerensen and S. Gygax, Physica B. 169, 673 (1991).

  63. Y. Kado and Y. Arita, J. Appl. Phys. 61, 2398 (1987); Y. Kado and Y. Arita, in Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials (Tokyo, 1986), p. 45.

  64. Y. Kado and Y. Arita, in Extended Abstracts of the 20th (1988 International) Conference on Solid State Devices and Materials (Tokyo, 1988), p. 181.

  65. H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 (1989).

  66. H. Fukumoto, M. Yamamoto, and Y. Osaka, Proc. Electrochem. Soc. 90, 239 (1990).

  67. K. Harada, H. Nakanishi, H. Itozaki, and S. Yazu, Jpn. J. Appl. Phys. 30, 934 (1991).

  68. M. Yamamoto, H. Fukumoto, and Y. Osaka, in Heteroepitaxy of Dissimilar Materials, edited by R. F. C. Farrow, J.P. Harbison, P. S. Peercy, and A. Zangwill (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 35.

  69. T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, Appl. Phys. Lett. 56, 1332 (1990); T. Inoue, M. Osonoe, H. Tohda, M. Hiramatsu, Y. Yamamoto, A. Yamanaka, and T. Nakayama, J. Appl. Phys. 69, 8313 (1991); L. Luo, X. D. Wu, R. C. Dye, R. E. Muenchausen, S. R. Foltyn, Y. Coulter, C. J. Maggiore, and T. Inoue, Appl. Phys. Lett. 59, 2043 (1991); T. Inoue, T. Ohsuna, L. Luo, X. D. Wu, C. J. Maggiore, Y. Yamamoto, Y. Sakurai, and J. H. Chang, Appl. Phys. Lett. 59, 3604 (1991); T. Inoue, T. Ohsuna, Y. Yamada, K. Wakamatsu, Y. Itoh, T. Nozawa, E. Sasaki, Y. Yamamoto, and Y. Sakurai, Jpn. J. Appl. Phys. 31, L1736 (1992); Y. Yamamoto, M. Satoh, Y. Sakurai, S. Nakajima, T. Inoue, and T. Ohsuna, Jpn. J. Appl. Phys. 32, L620 (1993).

  70. M. Yoshimoto, H. Nagata, T. Tsukahara, and H. Koinuma, Jpn. J. Appl. Phys. 29, L1199 (1990); H. Nagata, M. Yoshimoto, H. Koinuma, E. Min, and N. Haga, J. Cryst. Growth 123, 1 (1992); M. Yoshimoto, K. Shimozono, T. Maeda, T. Ohnishi, M. Kumagai, T. Chikyow, O. Ishiyama, M. Shinohara, and H. Koinuma, Jpn. J. Appl. Phys. 34, L688 (1995).

  71. H. Nagata, M. Yoshimoto, T. Tsukahara, S. Gonda, and H. Koinuma, in Evolution of Thin-Film and Surface Microstruc-ture, edited by C. V. Thompson, J.Y. Tsao, and D. J. Srolovitz (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), p. 445.

  72. H. Koinuma, H. Nagata, T. Tsukahara, S. Gonda, and M. Yoshimoto, Appl. Phys. Lett. 58, 2027 (1991).

  73. T. Chikyow, S. M. Bedair, L. Tye, and N. A. El-Masry, Appl. Phys. Lett. 65, 1030 (1994); L. Tye, T. Chikyow, N. A. El-Masry, and S. M. Bedair, in Epitaxial Oxide Thin Films and Heterostructures, edited by D. K. Fork, J. M. Phillips, R. Ramesh, and R. M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 107; L. Tye, N.A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, Appl. Phys. Lett. 65, 3081 (1994).

  74. The approximate error stated is calculated from the “B” quality data for SiO2, the “B-C” quality data for CeO2, and the “C” quality data for CeSi2 given in Ref. 24 and 25.

  75. T. Inoue, T. Ohsuna, Y. Obara, Y. Yamamoto, M. Satoh, and Y. Sakurai, Jpn. J. Appl. Phys. 32, 1765 (1993).

  76. D. K. Fork, D. B. Fenner, and T. H. Geballe, J. Appl. Phys. 68, 4316 (1990).

  77. E. J. Tarsa, J. S. Speck, and McD. Robinson, Appl. Phys. Lett. 63, 539 (1993).

  78. T. L. Chu, M. H. Francombe, G. A. Gruber, J.J. Oberly, and R. L. Tallman, Deposition of Silicon on Insulating Substrates, Report No. AFCRL-65-574 (Westinghouse Research Laboratories, Pitts-burgh, PA, 1965). See especially pp. 31–34 and pp. 41–44. (NTIS ID No. AD-619 992).

  79. M. Morita, H. Fukumoto, T. Imura, Y. Osaka, and M. Ichihara, J. Appl. Phys. 58, 2407 (1985); Y. Osaka, T. Imura, Y. Nishibayashi, and F. Nishiyama, J. Appl. Phys. 63, 581 (1988).

  80. H. Myoren, Y. Nishiyama, H. Fukumoto, H. Nasu, and Y. Osaka, Jpn. J. Appl. Phys. 28, 351 (1989).

  81. A. Lubig, Ch. Buchal, J. Schubert, C. Copetti, D. Guggi, C. L. Jia, and B. Stritzker, J. Appl. Phys. 71, 5560 (1992); A. Lubig, Ch. Buchal, D. Guggi, C. L. Jia, and B. Stritzker, Thin Solid Films 217, 125 (1992)

  82. I. Golecki, H. M. Manasevit, L. A. Moudy, J. J. Yang, and J. E. Mee, Appl. Phys. Lett. 42, 501 (1983); H. M. Manasevit, I. Golecki, L. A. Moudy, J. J. Yang, and J. E. Mee, J. Electrochem. Soc. 130, 1752 (1983); A. L. Lin, and I. Golecki, J. Electrochem. Soc. 132, 239 (1985).

  83. P. Legagneux, G. Garry, D. Dieumegard, C. Schwebel, C. Pellet, G. Gautherin, and J. Siejka, Appl. Phys. Lett. 53, 1506 (1988).

  84. H. Fukumoto, T. Imura, and Y. Osaka, Jpn. J. Appl. Phys. 27, L1404 (1988); H. Fukumoto, M. Yamamoto, Y. Osaka, and F. Nishiyama, J. Appl. Phys. 67, 2447 (1990); H. Fukumoto, M. Yamamoto, and Y. Osaka, J. Appl. Phys. 69, 8130 (1991).

  85. D. K. Fork, D. B. Fenner, G. A. N. Connell, J. M. Phillips, and T. H. Geballe, Appl. Phys. Lett. 57, 1137 (1990); D. K. Fork, D. B. Fenner, R. W. Barton, J. M. Phillips, G. A. N. Connell, J. B. Boyce, and T. H. Geballe, Appl. Phys. Lett. 57, 1161 (1990); D. K. Fork, F. A. Ponce, J. C. Tramontana, N. Newman, J. M. Phillips, and T. H. Geballe, Appl. Phys. Lett. 58, 2432 (1991).

  86. W. Pursseit, S. Corsépius, M. Zwerger, P. Berberich, H. Kinder, O. Eibl, C. Jaekel, U. Breuer, and H. Kurz, Physica C 201, 249 (1992).

  87. S. P. Murarka and C. C. Chang, Appl. Phys. Lett. 37, 639 (1980).

  88. M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, and D. Brasen, J. Electrochem. Soc. 132, 2677 (1985).

  89. Q. X. Jia and W. A. Anderson, Appl. Phys. Lett. 57, 304 (1990).

  90. E. Kolawa, F. C. T. So, E. T-S. Pan, and M-A. Nicolet, Appl. Phys. Lett. 50, 854 (1987).

  91. L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, Appl. Phys. Lett. 50, 1879 (1987).

  92. C. W. Nieh, E. Kolawa, F. C. T. So, and M-A. Nicolet, Mater. Lett. 6, 177 (1988).

  93. A. Charai, S. E. Hörnström, O. Thomas, P. M. Fryer, and J. M. E. Harper, J. Vac. Sci. Technol. A 7, 784 (1989).

  94. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, Appl. Phys. Lett. 65, 1522 (1994); T. Nakamura, Y. Nakao, A. Kami-sawa, and H. Takasu, Jpn. J. Appl. Phys. 33, 5207 (1994).

  95. H. M. Manasevit and W. J. Simpson, J. Appl. Phys. 35, 1349 (1964); H. M. Manasevit, A. Miller, F. L. Morritz, and R. Nolder, Trans. Metall. Soc. AIME 233, 540 (1965).

  96. F. A. Ponce, Appl. Phys. Lett. 41, 371 (1982).

  97. M. Ishida, I. Katakabe, T. Nakamura, and N. Ohtake, Appl. Phys. Lett. 52, 1326 (1988); K. Sawada, M. Ishida, T. Nakamura, and N. Ohtake, Appl. Phys. Lett. 52, 1672 (1988); K. Sawada, M. Ishida, T. Nakamura, and T. Suzaki, J. Cryst. Growth 95, 494 (1989).

  98. H. Iizuka, K. Yokoo, and S. Ono, Appl. Phys. Lett. 61, 2978 (1992).

  99. M. Ishida, K. Sawada, S. Yamaguchi, T. Nakamura, and T. Suzaki, Appl. Phys. Lett. 55, 556 (1989); M. Ishida, S. Yamaguchi, Y. Masa, T. Nakamura, and Y. Hikita, J. Appl. Phys. 69, 8408 (1991).

  100. G. Grube, A. Schneider, U. Esch, and M. Flad, Z. Anorg. Chem. 260, 120 (1949).

  101. E. Kolawa, C. Garland, L. Tran, C. W. Nieh, J. M. Molarius, W. Flick, M-A. Nicolet, and J. Wei, Appl. Phys. Lett. 53, 2644 (1988).

  102. Y. Zeng, Z. Zhang, W. Luo, N. Yang, Y. Cai, Z. Hua, and X. Shen, Thin Solid Films 214, 235 (1992); Z. Zhang, Y. Zeng, W. Lou, Y. Cai, Y. Sun, Z-Y. Hua, and X. Shen, Vacuum 43, 1033 (1992).

  103. E. Kolawa, C. W. Nieh, J. M. Molarius, L. Tran, C. Garland, W. Flick, M-A. Nicolet, F. C. T. So, and J.C. S. Wei, Thin Solid Films 166, 15 (1988).

  104. W. B. Pennebaker, IBM J. Res. Develop. 13, 686 (Nov. 1969).

  105. S. Matsubara, T. Sakuma, S. Yamamichi, H. Yamaguchi, and Y. Miyasaka, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 243; T. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi, and Y. Miyasaka, Appl. Phys. Lett. 57, 2431 (1990); H. Yamaguchi, S. Matsubara, and Y. Miyasaka, Jpn. J. Appl. Phys. 30, 2197 (1991).

  106. H. Nagata, T. Tsukahara, S. Gonda, M. Yoshimoto, and H. Koinuma, Jpn. J. Appl. Phys. 30, L1136 (1991).

  107. H. Ishiwara and K. Azuma, in Heteroepitaxy on Silicon; Fundamentals, Structure, and Devices, edited by H. K. Choi, R. Hull, H. Ishiwara, and R. J. Nemanich (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 369.

  108. H. Mori, and H. Ishiwara, Jpn. J. Appl. Phys. 30, L1415 (1991); H. Ishiwara, H. Mori, K. Jyokyu, and S. Ueno, in Silicon Molecular Beam Epitaxy, edited by J.C. Bean, S.S. Iyer, and K. L. Wang (Mater. Res. Soc. Symp. Proc. 220, Pittsburgh, PA, 1991), p. 595.

  109. Since the free energy of the ternary or higher, multicomponent oxide must be lower than its binary constituents in order for it to form, and the binary constituents selected are individually compatible with silicon, the only potential reactions with silicon (i.e., where [DELTA]G < 0) involve ternary or higher, multicomponent products (e.g., MM’xOz, MM’xSiy, or MM’xSiyOzphases). Although this greatly reduces the number of reactions that need to be tested to establish thermodynamic stability, thermodynamic data for these relevant multicomponent materials are often lacking.

  110. Y. Kado and Y. Arita, in Extended Abstracts of the 21st Conference on Solid State Devices and Materials (Tokyo, 1989), p. 45.

  111. H. M. Manasevit and D. H. Forbes, J. Appl. Phys. 37, 734 (1966).

  112. H. Seiter and Ch. Zaminer, Z. Angew Phys. 20, 158 (1965).

    CAS  Google Scholar 

  113. M. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodama, H. Yamawaki, and T. Yamaoka, J. Electrochem. Soc. 129, 2569 (1982); M. Ihara, Microelectron. Eng. 1, 161 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbard, K.J., Schlom, D.G. Thermodynamic stability of binary oxides in contact with silicon. Journal of Materials Research 11, 2757–2776 (1996). https://doi.org/10.1557/JMR.1996.0350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0350

Navigation