Skip to main content
Log in

Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead zirconate titanate (PZT 40/60) thin films were fabricated on electroded silicon wafers using chemical solution deposition. Two different chelating agents, acetic acid and acetylacetone, were used in the synthesis of the precursor solutions. The microstructure of the acetylacetone-derived film was characterized by nucleation at the platinum electrode and a columnar growth morphology (˜100−200 nm lateral grain size). In contrast, the acetic acid-derived film was characterized by both columnar grains nucleated at the electrode, and larger (˜1 μm) grains nucleated at the surface of the film. Using Fourier transform infrared (FTIR) diffuse reflectance spectroscopy, we also noted that the pyrolysis behavior of the films was dependent on the chelating agent employed. The acetylacetone-derived films, which displayed only one nucleation event, were also characterized by a higher pyrolysis temperature than the acetic acid-derived films. Previously, microstructural differences of this nature were attributed to variations in “precursor structure.” In this paper, we discuss an alternative mechanism for the observed microstructural variations in films prepared from different solution precursors. In the model proposed, we discuss how changes in film pyrolysis temperature result in a change in film crystallization temperature, and hence, a change in the effective driving force for crystallization. We show how the change in crystallization driving force is expected to impact the thin film microstructure due to the accompanying variations that occur in the barrier heights for interface (lower electrode) and surface nucleation. A standard approach to nucleation in glasses is used as the basis of the proposed model. Finally, we also discuss how the model can be used to understand the observed effects of heating rate and thickness on the microstructure of solution-derived thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dimos, S. J. Lockwood, R. W. Schwartz, and M. S. Rodgers, IEEE Trans. on Components, Packaging, and Manufacturing Tech. A 18, 174 (1995).

    CAS  Google Scholar 

  2. J. F. Scott and C. A. Paz de Araujo, Science 246, 1400 (1989).

    Article  CAS  Google Scholar 

  3. C. E. Land, J. Am. Ceram. Soc. 71 (11), 905 (1988).

    Article  CAS  Google Scholar 

  4. R. W. Vest and J. Xu, Ferroelectrics 93, 21 (1989).

    Article  CAS  Google Scholar 

  5. K. D. Budd, S. K. Dey, and D. A. Payne, Brit. Ceram. Soc. Proc. 36, 107 (1985).

    CAS  Google Scholar 

  6. C. D. E. Lakeman, J-F. Campion, and D. A. Payne, in Ferroelectric Films, edited by A. S. Bhalla and K. M. Nair (Ceramic Trans. 25, American Ceramic Society, Westerville, OH, 1992), pp. 413–439.

  7. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 64 (5), 2717 (1988).

    Article  CAS  Google Scholar 

  8. R. W. Schwartz, B. C. Bunker, D. B. Dimos, R. A. Assink, B. A. Tuttle, D. R. Tallant, and I. A. Weinstock, Integrated Ferro. 2, 243 (1992).

    Article  CAS  Google Scholar 

  9. C. Chen, D. F. Ryder, Jr., and W. A. Spurgeon, J. Am. Ceram. Soc. 72 (8), 1495 (1989).

    Article  CAS  Google Scholar 

  10. C. D. E. Lakeman and D. A. Payne, J. Am. Ceram. Soc. 75 (11), 3091 (1992).

    Article  CAS  Google Scholar 

  11. R. W. Schwartz, T. J. Boyle, S. J. Lockwood, M. B. Sinclair, D. Dimos, and C. D. Buchheit, Integrated Ferro. 7, 259 (1995).

    Article  CAS  Google Scholar 

  12. K. Kushida, K. R. Udayakumar, S. B. Krupanidhi, and L. E. Cross, J. Am. Ceram. Soc. 76 (5), 1345 (1989).

    Article  Google Scholar 

  13. K. Nashimoto, M. J. Cima, P. C. McIntyre, and W. E. Rhine, J. Mater. Res. 10, 2564 (1995).

    Article  CAS  Google Scholar 

  14. K. Nashimoto and S. Nakamura, Jpn. J. Appl. Phys. 33, Pt. 1, No. 9B, 5147 (1994).

  15. S. Ramamurthi and D. A. Payne, J. Am. Ceram. Soc. 73 (8), 2547 (1990).

    Article  CAS  Google Scholar 

  16. R. W. Schwartz, Ph.D. Thesis, University of Illinois (1989).

  17. P. R. Coffman and S. K. Dey, J. Sol-Gel Sci. Technol. 1, 251 (1994).

    Article  CAS  Google Scholar 

  18. R. W. Schwartz, R. A. Assink, and T. J. Headley, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. A. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), pp. 245–254.

  19. R. A. Assink and R. W. Schwartz, Chem. Mater. 5 (4), 511 (1993).

    Article  CAS  Google Scholar 

  20. R. W. Schwartz, R. A. Assink, D. Dimos, M. B. Sinclair, T. J. Boyle, and C. D. Buchheit, in Ferroelectric Thin Films IV, edited by S. B. Desu, B. A. Tuttle, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 377–387.

  21. B. A. Tuttle, J. A. Voigt, D. C. Goodnow, D. L. Lamppa, T. J. Headley, M. O. Eatough, G. Zender, R. D. Nasby, and S. M. Rodgers, J. Am. Ceram. Soc. 76 (6), 1537 (1989).

    Article  Google Scholar 

  22. D. M. Haaland, Sandia National Laboratories, private communication. In previous studies with sol-gel derived alumina, a broad resonance at ~2300 cm−1 was attributed to entrapped CO2. The width of the resonance was believed to be due to the distribution of pore sizes within the material.

  23. R. W. Schwartz, J. A. Voigt, T. J. Boyle, T. A. Christenson, and C. D. Buchheit, Ceram. Eng. Sci. Proc. 16 (5), 1045 (1995).

    Article  CAS  Google Scholar 

  24. W-H. Shih and Q. Lu, in Amorphous Insulating Thin Films, edited by J. Kanicki, W. L. Warren, R. A. B. Devine, and M. Matsumura (Mater. Res. Soc. Symp. Proc. 284, Pittsburgh, PA, 1993), pp. 481–486.

  25. C. J. Brinker and G. W. Scherer, in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by L. L. Hench and D. R. Ulrich (John Wiley & Sons, Inc., New York, 1984), pp. 43–59.

  26. R. Roy, J. Am. Ceram. Soc. 52, 344 (1969).

    Article  CAS  Google Scholar 

  27. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, and J. Michael, J. Mater. Res. 7, 1876 (1992).

    Article  CAS  Google Scholar 

  28. A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, Chem. Mater. 6 (6), 750 (1994).

    Article  CAS  Google Scholar 

  29. J. A. Voigt, B. A. Tuttle, T. J. Headley, and D. L. Lamppa, in Ferroelectric Thin Films IV, edited by S. B. Desu, B. A. Tuttle, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 395–402.

  30. R. W. Schwartz and T. L. Reichert, unpublished results.

  31. R. W. Schwartz, D. A. Payne, and A. J. Holland, in Ceramic Powder Processing Science, edited by H. Hausner, G. R. Messing, and S. Hirano (Deutsche Keramische Gesellschaft, 1989), pp. 165–172.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, R.W., Voigt, J.A., Tuttle, B.A. et al. Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. Journal of Materials Research 12, 444–456 (1997). https://doi.org/10.1557/JMR.1997.0066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0066

Navigation